

Met Office Hadley Centre

Model projections of Centuryscale change in Extreme Sea-Level for UKCP09 and UKCP18

×10:2

SL SpaceWatch workshop 2016 03 22

Tom Howard, Matt Palmer, Jon Tinker, Jason Lowe,

- Overview of UKCP18 Marine Projections
- 21st century change in storm surge: –UKCP09
 - -UKCP18

Overview of UKCP18 Marine Projections

www.metoffice.gov.uk

Crown copyright

UKCP18 Marine Strands of science work

Topic 1: Ensemble Projections of large-scale mean sea level change for the 21st century (and beyond?)

Topic 2: Propagation of sea level signal onto UK shelf

Topic 3: Projected changes in Storm Surge

Topic 4: H++ assessment

Topic 5: Providing Useful Output (how to combine 1-4?)

Ensemble projections of mean sea level

Based on models and methods presented in IPCC AR5 WG1

Ensemble projections of mean sea level

Based on models and methods presented in IPCC AR5 WG1

Ensemble projections of mean sea level: what's new?

- "Pattern scaling" approach to oceanographic sea level
- Multiple estimates of gravitation fingerprints \rightarrow uncertainty
- Estimate of regional variability (tide gauges + models)
- Consideration of changes beyond 2100..

Je ne regrette rien

• Rohling et al. (2008) *High rates of SLR during the last interglacial period*

• Pfeffer et al. (2008) Kinematic constraints on glacial contribution to 21st-century SLR

Je ne regrette rien

• Rohling et al. (2008) *High rates of SLR during the last interglacial period*

• Pfeffer et al. (2008) Kinematic constraints on glacial contribution to 21st-century SLR

Do you feel lucky?

21 st century sea level rise	Evidence types	Comment
Up to 1m	Process based models, palaeo studies of last interglacial, semi-empirical methods, kinematic constraints, expert narratives, amount of land ice available	
Up to 1.5m	A limited number of process based models, palaeo studies of last interglacial, semi-empirical methods, kinematic constraints, expert narratives, amount of land ice available	Katsman et al. (2008) expert narratives in this range.
Up to 2m	Some process based models estimates from perturbed parameter type experiments, palaeo studies of the last interglacial, a minority of the semi- empirical methods, kinematic constraints, expert narratives.	Pfeffer et al. (2008); Bamber and Aspinal (2013); and Jevrejeva et al (2014) reach this range.
Up to 2.5m	Upper estimate of last interglacial palaeo estimates, a small minority of very extreme semi-empirical methods.	
Above 3m	Simple calculation of amount of land ice. Evidence from palaeo but for periods that are a poor analogue to present day	

21 st century sea level rise	Evidence types	Comment
Up to 1m	Process based models, palaeo studies of last interglacial, semi-empirical methods, kinematic constraints, expert narratives, amount of land ice available	
Up to 1.5m	A limited number of process based models, palaeo studies of last interglacial, semi-empirical methods, kinematic constraints, expert narratives, amount of land ice available	Katsman et al. (2008) expert narratives in this range.
Up to 2m	Some process based models estimates from perturbed parameter type experiments, palaeo studies of the last interglacial, a minority of the semi- empirical methods, kinematic constraints, expert narratives.	Pfeffer et al. (2008); Bamber and Aspinal (2013); and Jevrejeva et al (2014) reach this range.
Up to 2.5m	Upper estimate of last interglacial palaeo estimates, a small minority of very extreme semi-empirical methods.	
Above 3m	Simple calculation of amount of land ice. Evidence from palaeo but for periods that are a poor analogue to present day	

UKCP09: change in storm surge

www.metoffice.gov.uk

Crown copyright

Storminess/Surge

CS3 nested

Driven by MOHC Regional Ensemble

Wind

MSLP

Bottom friction

Gravitational forcing

(Rotation)

Lateral BCs: harmonic + inv. barom.

Howard et al. Sources of 21st century sea-level rise along the coast of northwest Europe, Ocean Science 2104

Combined high-end and mid-range estimation of 21st-century change in extreme sea level

Storm surge climate Ice-induced DSL Ice melt incl elastic fingerprint Thermal exp and non-ice DSL

Zero offset: vertical land movement = viscous fingerprint

However, *trends* in storminess-driven component of extreme sea level at Thames mouth are not significant when driven by MOHC ensemble

Plot shows time series of annual max skew surge and a fitted trend line based on the annual 5 largest.

© Crown copyright Met Office

UKCP18: change in storm surge

Crown copyright

UKCP18 changes in storm surges

Simulations with CS3 using Euro-CORDEX data:

•Select small number of models that span storm track response

Providing useful output

www.metoffice.gov.uk

© Crown copyright

Based on: Coastal flood boundary conditions for UK mainland and islands. McMillan, Batstone, Worth, Tawn,

Horsburgh, Lawless

Central estimate of 10000-year still water level [above HAT, blue] and 95%CI [red]

The only coastal-flood RL plot in UKCP09

UK Climate Projections science report: Marine & coastal projections - Chapter 4

Figure 4.10: Skew surge return level curves (not including mean sea level change) at the Thames Estuary for raw PPE ensemble (red lines) and simulated results for MME model Q for the end of the 21st century (approx 2080–2099) using two different scaling approaches (blue and green lines). The green curve contains little evidence of a climate signal. The dark blue curve has a significant climate change signal.

Canute (Australia)

canute.sealevelrise.info

Thank you for listening

tom.howard@metoffice.gov.uk

www.metoffice.gov.uk

Crown copyright

Questions/comments...

www.metoffice.gov.uk

© Crown copyright

Additional Slides...

www.metoffice.gov.uk

© Crown copyright

AR5 statement: 'GMSL rise during the 21st century for each RCP scenario is *likely (medium confidence)* to lie within the 5 to 95% range given by the process-based projections'

i.e. P(GMSL rise < z95 over next 85 years) > 0.66

If MSL were held constant at present level,

P(extreme SL does not exceed the 200-year RL over the next 85 years)= $(199/200)^85 = 0.65$

So in combining the two we can give useful guidance from the processbased projections up to ~100 year RL. Above that, need to consider H++.

For users interested in an asset period of, say, 2016-2050, H++ less relevant. But for e.g. 2016-2030, where we are in the 18.6 year nodal cycle is important.

Figure 4. Comparison of contributions to the 21st century change in 50-year storm surge height around NW Europe (centimetres). (a) Global mean contributions, (b) local contributions. Black bars indicate the representative mid-range, and red, the illustrative highend contributions. Blue dots show the individual ensemble members where these are available. The abbreviations used in the figure are those given in Tables 1 and 2.

Figure 5. Addition of illustrative high-end (and representative midrange) projections of contributions to 21st century change in the height of the 50-year storm surge for seven locations around NW Europe. The locations are Aberdeen, (A); Sheerness, (S); Cork Harbour (C); Roscoff, (R); The Hague, (H); Esbjerg (E) and Bergen (B). For each location, the larger (left-hand) bar shows the high-end estimate, and the smaller (right-hand) bar shows the mid-range estimate. The projected contribution from *GIA* is shown as an offset to the zero of each bar. The mid-range *SRG* projection at Sheemess is negative, and so that this can be seen, the mid-range *SRG* projections are shown as half-width bars. Further details are given in the main text.

Propagation of sea level onto UK shelf

New experiments with NEMO-Shelf:

- Repeat 1 member of UKCP09 with NEMO-Shelf
- Downscale a pair of CMIP5 models (model uncertainty)
- Long piControl run to assess sea level variability

DSL regression against MSL

c/f Roberto Bilbao, Jonathan Gregory, @Reading

→ Cast net wider using simple models

...& ? MSL better predictor (than time) of surge change

this example: Ice2Sea A1B HadCM3