Space for Smarter Government Programme

Altimeter processing and data for Sea Level SpaceWatch Phase 2

Paolo Cipollini, Francisco Calafat National Oceanography Centre

Web:

http://www.spaceforsmartergovernment.uk/

Email: ssgp@sa.catapult.org.uk

National
Oceanography Centre

NATURAL ENVIRONMENT RESEARCH COUNCIL

Outline

- Summary of extension and improvements wrt Phase 1
- The extended Jason-1/Jason-2 dataset 2002-2015
 - homogenisation of corrections
- Results:
 - trends and relative errors
 - amplitude and phase of the annual signals

PREVIOUS RESULTS – that's what we started from

Altimeter processing for Sea Level SpaceWatch

- Altimetry data in the coastal zone need specialized waveform processing (retracking). The solution adopted in SLSW is to use a specialized coastal retracker (ALES)
- compute two sea level quantities:
 - TWLE Total Water Level Envelope i.e. the actual level including tides and atmospheric forcing – useful as a reference and because it displays extreme events (surges)
 - SSHA Sea Surface Height Anomaly, i.e. anomaly w.r.t. the mean sea surface, with tides/atmospheric effects removed → this is the one from which we derive Sea Level Rates
- co-locate measurements on nominal ground tracks, and build time series (product)
- compute a few statistics (also a product)

The ALES approach

Illuminated surface:

→ use only part of the waveform, the one with the leading edge Adaptive Leading-Edge Subwaveform (ALES) retracker

Examples of Jason-2 retracking by ALES

- Validated for SSH for Envisat, J-1, J-2, AltiKa Passaro et al, 2014, 2015b)
- Validated for SWH for Envisat, J-1/2 (Passaro et al 2015a)
- J-1, J-2 and Envisat data available now for SeaLevel SpaceWatch, AltiKa in progress

Products in Phase 2

- Two pairs of missions 2002-2015 (14 full years)
 - Jason-1 + Jason-2 (10-day orbit)
 - processing completed
 - Envisat + AltiKa (35-day orbit)
 - AltiKa still work in progress
- Latest corrections, consistent across missions (see next slide)
- Time series of TWLE,SSHA, SSHA screened/filtered
- 14-yr trend & uncertainty (standard error)
 - computed with Newey-West algorithm that accounts for correlation of time series
 - validation: see Simon's talk
- Annual cycle phase and amplitude
 - Inter-annual variability can be characterized by the standard deviation and the maxima of annual sea level values or by a more sophisticated mode (see Francisco's talk)

Updated corrections in SLSW - 1

- To derive SSH, altimetry data need to be corrected for instrumental, atmospheric and surface effects
 - To reach the required accuracy for SSH (~cm) and Sea Level rise rates (~mm/y) we need to apply state-of-the-art corrections
 - a Mean Sea Surface also needs to be subtracted
- Corrections need to be consistent across missions
 - correction provided with the original J-1 and J-2 data records are not the same! for instance J-1 has FES2004 and GOT4.8 tidal model, J-2 has FES2012 and GOT4.10

Updated corrections in SLSW - 2

- Solution: we get the latest corrections from the RADS archive, hosted by NOAA and TU Delft
 - No specific retracking in RADS, and only 1-Hz data (~7km), but the corrections are routinely updated and homogeneized across missions!

Jason-1/2 Original corrections

Jason-1/2 Updated corrections

Disclaimer: NOC is responsible for the information contained in the presentation. Views expressed do not necessarily reflect those of the SSGP and UKSA

248

10-day and 35-day orbits

Disclaimer: NOC is responsible for the information contained in the presentation. Views expressed do not necessarily reflect those of the SSGP and UKSA

PREVIOUS RESULTS

Envisat

Standard Error of Sea Level Trend estimate from Jason-1/2 2002-2015

Standard Error of Sea Level Trend estimate from Jason-1/2 2002-2015

PREVIOUS RESULTS

Envisat

Amplitude of Sea Level annual cycle (m) from Jason-1/2 2002-2015

Amplitude of Sea Level annual cycle (m) from Jason-1/2 2002-2015 62 0.1 60 0.09 58 80.0 56 0.07 54 0.06 52 0.05 50 FES2012 48 0.04

2

4

0

-12

-10

Amplitude of Sea Level annual cycle (m) from Jason-1/2 2002-2015 62 0.1 60 0.09 58 80.0 56 0.07 54 0.06 52 0.05 50 GOT410 48-0.04 2 -10 -120 4

Phase of Sea Level annual cycle (day-of-year) from Jason-1/2 2002-2015

Phase of Sea Level annual cycle (day-of-year) from Jason-1/2 2002-2015

- Results from combined Jason-1/Jason-2 are improved (longer time series, 14 yr), 'less noisy'
 - AltiKa processing still being fine-tuned
 - Consistency of corrections crucial for reliable estimated
- Still a lot of regional variations, which fully support the Sea Level SpaceWatch concept
- Jason-3 (launched Jan 16) fully compatible with the system
- Sentinel-3 (launched Feb 16) very promising but on a different set of tracks

