

National Oceanography Centre Southampton University of Southampton and Natural Environmental Research Council

Southampton

Spatial and temporal analysis of extreme sea level events around the UK coast

Ivan Haigh Associate Professor in coastal Oceanography

Ocean and Earth Science, National Oceanography Centre, University of Southampton

I.D.Haigh@soton.ac.uk

Cornish coast Porthleven 5 February 2014

Ĩ

-

1. Introduction

Motivation

- '<u>Footprint</u>' the large areas of coastline affected;
- **'Clustering'** large number of significantly coastal flooding events occurring one after another over a relatively short period of time;
- Extreme events are rarely assessed in terms of 'clustering' or 'footprint', despite the fact this leads to amplified flood damages. Extreme events are rarely assessed on an individual basis.
- Fundamental lack of understanding of processes.

A. Method – Water Level

- Stage 1: Identify high waters ≥ 1 in 5 year EA return level (offset by MSL)
 <u>310 HW's</u> are defined
- Stage 2: Distinguish unique storm events and capture storm tracks.
 <u>96</u> storms are identified
- Stage 3: Determine flood consequences and compile systematic commentaries by event and storm

 All data is freely available at: <u>www.surgewatch.org</u>

B. Method – Skew Surge

- Stage 1: Identify skew surges ≥ 1 in 5 year return level (GPD - 99.75%)
 <u>261 SK's</u> are defined
- Stage 2: Distinguish unique storm events and capture storm tracks.
 <u>111</u> storms are identified
- Stage 3: Determine flood consequences and compile systematic commentaries by event and storm
 - Some events are the same as HW;
 - Others not.

Southampton

6th December 2013

L: Dover 843 years;

Event 6: Dover 103 years

Southampton

Example Storm track - 3rd January 2014

NOAA 20th Century meteorological Reanalysis http://www.esrl.noaa.gov/psd/data/20thC_Rean/

3. Spatial Analysis

3. Spatial Analysis

3. Spatial Analysis

Site 23: Millport

Southampton

31. 09/02/1997 15:45

5. Conclusions

- Southampton
- Developed a new frame work for looking at extreme sea level events - 'Event Analysis' and used this to create a new database for the UK -SurgeWatch;
- Insight into the <u>spatial footprint</u> of events and <u>temporal clustering</u> of events;
- Footprint broadly 4 typical footprints; importantly footprints can affect two stretches of coastline;
- Clustering reasonably rare; water level do not have events between 4-8 days, due to spring/neap tidal cycle; footprint of consecutive events usually differs.

6. Papers

- 1. Wadey, M.P., Haigh, I.D., Brown, J.M., 2014. A century of sea level data and the UK's 2013/14 storm surges: an assessment of extremes and clustering using the Newlyn tide gauge record. Ocean Science, 10, 1031-1045.
- Haigh, I.D., Wadey, M.P., Gallop, S.L, Loehr, H., Nicholls, R.J., Horsburgh, K., Brown, J.M, and Bradshaw, E., 2015. A user-friendly database of coastal flooding in the United Kingdom 1915-2014. <u>Scientific Data</u>, 2, Article number: 150021.
- 3. Haigh, I.D., Nicholls, R.J., Horsburgh, K., Brown, J.M, and Bradshaw, E., 2015. A spatial and temporal assessment of extreme sea level events around the coastline of the UK. Special Issue <u>Frontiers in Marine Science</u>.

National Oceanography Centre Southampton University of Southampton and Natural Environmental Research Council

Southampton

Spatial and temporal analysis of extreme sea level events around the UK coast

Ivan Haigh Associate Professor in coastal Oceanography

Ocean and Earth Science, National Oceanography Centre, University of Southampton

I.D.Haigh@soton.ac.uk

3. SurgeWatch – Stage 1

3. SurgeWatch - Stage 1

Example: Newlyn

3. SurgeWatch – Stage 2

Southampton

Stage 2: Distinguished unique storm events and captured storm tracks

Step 2b: Used meteorological data to check each of the storms distinguished in step 2a and correct events wrongly identified

Step 2a: Used simple storm window approach to assign high waters to events

Step 2c: Captured meteorological information (.e.g. storm track) associated with each of the 96 distinct storm events pr fie Ce

DATASET 3: Mean sea level pressure & wind fields - 20th Century Reanlysis (1915 - 2014)

3. SurgeWatch – Stage 3

Stage 2:96 Distinct storm events

Stage 3: Determined whether coastal flooding occurred or not and compiled systematic event commentaries

Step 3a: Used dates of 96 events as chronological base to investigate whether historical documentation exists for concurrent coastal flood

Step 3b: Compiled event commentaries with pictorial and tabula display of data from stages 1 and 2.

1.Journal papers;

3.Journalistic reports (websites);

2.Professional reports;

1.Other online sources (blogs)