Investigating the Application of Synthetic Aperture Altimetry over oceans, coastal and inland waters.

Jérôme Benveniste (ESA/ESRIN)

Ole Andersen, Lars Stenseng, DTU-Space Philippa Berry, Richard Smith, James Wheeler (EAPRS) Christine Gommenginger, Paolo Cipollini (NOCS) Cristina Martin-Puig, Giulio Ruffini (Starlab) David Cotton (Satellite Oceanographic Consultants) R. Keith Raney (Johns Hopkins Univ./Applied Physics Lab)

Presentation Content

- What is Delay-Doppler Altimetry (DDA)?
- The ESA SAMOSA project
- Developing a waveform echo model
- First results from Inland Water Simulations
- Conclusions

What is Delay-Doppler Altimetry (SAR)?

Conventional ALT footprint scan

DDA: a fundamentally different method

ESA SAMOSA project

- SAMOSA Development of SAR Altimetry Mode Studies and Applications over Ocean, Coastal Zones and Inland Water
- Project management: David Cotton, SatOC
- Consortium members: EAPRS De Montfort University, NOCS, Starlab, Danish National Space Centre
- Tasks:
 - Review state of the art (Starlab)
 - Quantify improved range error in different sea states (NOCS) 2.
 - Assess recovery of short scale surface slope signals (DNSC) 3.
 - Develop theoretical model for DDA waveforms (Starlab) 4.
 - Assess capability in coastal zone and inland waters (DMU) 5.
 - Application to RA-2 individual echoes (NOCS) 6.
 - Validation with ASIRAS data (DNSC) 7.

Theoretical DDA Echo Waveform Model over ocean

Progress done on theoretical model

G.S. Brown, "The Average Impulse Response of a Rough Surface and Its applications", IEEE Trans. Antennas Propag., vol. AP-25, pp. 67-74, Jan. 1977. It has been proved that previous to multi-look and after accumulation the DDA waveform for a given Doppler bin shall be expressed as a triplefold convolution

$$E[I_R] = P_{FS}(\tau, f_a) * S_R(\tau, f_a) * \left(\frac{c}{2}\right) P_z\left(\frac{c\tau}{2}\right)$$

- No curvature effects across track have been introduced in the analysis, but along track curvature effects have been accounted for
- Circular antenna pattern considered
- Ocean Gaussian statistics have been assumed
- Earth curvature along track and off-nadir (ξ,φ) angle effects have been introduced in waveform model
- A final analytical solution for $\phi = 0$ has been defined for waveform previous to multi-look
- Vertical spacecraft velocity component has not be considered in the analysis

National Oceanography Centre, Southampton UNIVERSITY OF SOUTHAMPTON AND NATURAL ENVIRONMENT RESEARCH COUNCIL

Flat surface impulse response

• Flat surface impulse response:

 \checkmark Assumed Gaussian approximation for the antenna Gain

$$P_{FS}(\tau, f_a) = \frac{\lambda_0^2}{(4\pi)^2 L_p} \int G^2(\vec{\rho}) \frac{1}{r^4} \sigma_0(\vec{\rho}) \,\delta^2(\tau - \tau_s(\vec{\rho}), f_a - f_s(\vec{\rho})) \,d^2\vec{\rho}$$

$$\tau_s = \frac{1}{hc} (y^2 + (h - z)^2 - h^2)$$

$$f_s = \alpha f_D$$

$$f_D = \frac{2V_s}{\lambda_0 h} (x_0 - x_n)$$

P_{FS} simulations for a scatter

National Oceanography Centre, Southampton UNIVERSITY OF SOUTHAMPTON AND NATURAL ENVIRONMENT RESEARCH COUNCIL

SEpdf

• Surface Elevation Probability Density Function (SEpdf)

$$\left(\frac{c}{2}\right) P_z\left(\frac{c\tau}{2}\right) = \frac{1}{\sqrt{2\pi \left(\frac{2\sigma_s}{c}\right)^2}} \exp\left[-\frac{\tau^2}{2\left(\frac{2\sigma_s}{c}\right)^2}\right]$$

Comparison of numerical and analytical solutions

CRYMPS simulations over inlands water scenarios

Methodology

- CRYMPS: Cryosat Mission Performance Simulator
- CRYMPS developed & run at University College London/MSSL, in collaboration with ESA/ESTEC
- Simulates the CryoSat platform orbit and instrument operation, generates official Cryosat products for LRM, SAR and SARIn mode, for a given (explicit) surface
- Simulator and surface descriptors optimised for ice/sea ice surfaces
- Here, CRYMPS is applied to inland water and ocean surfaces

CRYMPS scenarios

• First DMU scenario area selected over Amazon basin

66°15′W

- Inputs comprised DEM (from ACE2) and Sigma0 model over area of 40 x 107km
- Area characterised by gradual topographical change with large Sigma0 variation
 - 2 other scenarios to model different situations 66°15'W 65°45'W S²F₁

66°W

65°45'W

51.7

44.1

36.5

m

Level1-b

- Level 1-b are averaged echoes which equate to the standard PRF of existing altimeters.
- Scenario processed with differing polar angle response produced very different results
- Run 1 polar angle: 0.2618<Rads> waveforms show significant power throughout the bins
- Run 2 polar angle: 0.001 <Rads> waveforms for the most part display clear quasi-specular peaks
- Waveforms then processed using the Berry expert system to determine if retracking were possible
- In both runs around 70% of all the waveforms could be successfully retracked

Run 1 (rough)

Run 2 (specular)

Process	Run 1 (wide)	Run 2 (qs)
Total input	240	320
No power_	17	13
No leading	56	86
edge		
Retrack	0	0
viability		
failures		
Accepted	167 (~70%)	221 (~69%)

Individual echoes (SAR mode)

SAR mode provides dense along-track sampling. Left shows waveforms, centre is reconstructed waveforms from IEs, right shows sample of full resolution SAR mode data.

Level 1-b

Summed SAR mode data

Full resolution SAR mode data

Next Scenario

E.A.P.R.S.

- Scenario over
 Northern
 USA lakes
- DEM generated using SRTM 1" dataset
- Polar angle response at 0.087 rads

Coastal Ocean Scenario

• Simple scenario with idealized coastal features: sigma0 variation, SSH variation, coastal setup, wave steepening, presence of land

Conclusions

- SAMOSA will assess the improved performance of DDA w.r.t. pulse-limited altimetry to:
 - Retrieve higher-accuracy ocean range, detect short-scale surface slope, extend altimetry to the coastal zone, applications over inland water surfaces.
- Initial investigations of CRYMPS output over inland waters show much promise.
- Further work
 - will develop and experimentally test new ocean re-tracking method based on these theoretical waveform developments.
 - Will analyse CRYMPS output over more realistic inland water surfaces.
 - Further developments will contribute to preparations for Sentinel-3.

Investigating the Application of Synthetic Aperture Altimetry over oceans, coastal and inland waters.

Thank You !

