#### The SAMOSA project

Development of SAR Altimetry studies over Oceans, coastal zones and inland Water

David Cotton

d.cotton@satoc.eu

1 July 2010 ESA Living Planets

Co-authors:

C. Martin-Puig (STARLAB), C. Gommenginger, P. Cipollini (NOC); P Berry (DMU), S. Dinardo (SERCO); L Stenseng (DTU Space)

SAMOSA

Project funded by ESA under the STSE programme:

Support To Science Elemen

#### **SAMOSA** Motivation and Mission

#### MOTIVATION

- CryoSat-2  $\rightarrow$  SIRAL
  - First satellite-borne SAR altimeter



IMAGES ARE COURTESY OF ESA



#### MISSION

 To quantify the improvements of SAR altimetry compared to conventional altimetry for observations over ocean, coastal zones and inland waters

#### SAMOSATEAM



### SAMOSA OBJECTIVES

- 1. To establish a state of the art review for SAR altimetry capabilities to observe water surfaces
- 2. To reduce SARM data into LRM data and perform a scientific study of the **potential improved capability of SAR** data **compared to conventional altimetry** over water surfaces
- 3. To develop a **theoretical model** for the SAR altimetry mode echoes over water surfaces
- 4. To define a **new re-tracking method** for the SAR altimetry mode
- 5. To perform a **scientific study** of the potential capabilities of SAR altimetry data to characterise coastal zones, estuaries, rivers and lakes
- 6. To evaluate the SAMOSA re-tracker with **ASIRAS** data

### SAMOSA OBJECTIVES

- 1. To establish a **state of the art review for SAR altimetry** capabilities to observe water surfaces
- To reduce SARM data into LRM data and perform a scientific study of the potential improved capability of SAR data compared to conventional altimetry over water surfaces
- 3. To develop a **theoretical model** for the SAR altimetry mode echoes over water surfaces
- 4. To define a **new re-tracking method** for the SAR altimetry mode
- 5. To perform a **scientific study** of the potential capabilities of SAR altimetry data to characterise coastal zones, estuaries, rivers and lakes
- 6. To evaluate the SAMOSA re-tracker with **ASIRAS** data

## SAMOSA Modelling / CRYMPS

- In the absence of "real" data needed access to modelled SIRAL output to test theory and develop software
- Low Rate Mode and SAR mode simulated waveforms produced for a set of scenarios:
  - Initial rudimentary ocean surface: varying sea state
  - A sea floor topography scenario, variations in sea surface height, low swh, short wavelength
  - Inland waters scenarios: Amazon Basin, Canadian Lakes
  - Realistic ocean wave spectra, varying sea state
  - Coastal zone scenarios: one "oceanographic", one river delta
- Thanks to MSSL for running these scenarios

#### **SAMOSAO1:** State of the art review

• The SAMOSA team defined a SAR Altimetry state of the art review available at:

http://www.satoc.eu/projects/samosa/





#### SAMOSAO2: RDSAR

- The SIRAL modes are mutually exclusive
- For the quantitative comparison of SARM and LRM data the SAMOSA team is working on the reduction of SAR data such that it emulates conventional altimetry data
- Achieving this objective would allow to retrieve LRM data and SARM data from a single operating mode

# SAMOSA O3: SAR altimeter theoretical model

- An analytical waveform model has been defined for:
  - Gaussian Antenna Pattern
  - No curvature effects across track
  - No radial velocity effects
  - Gaussian sea surface statistics
  - Absence of across-track miss-pointing effects
- Currently the team is improving this model:
  - Introduce Elliptical antenna pattern
  - Consider curvature effects across track
  - Study radial velocity effects
  - Use of non-Gaussian sea surface geometry

# SAMOSA Derivation of the waveform model

- Given the new shape of SARM echoes there is a need to define a new theoretical model to retrack waveforms
- SAMOSA team has defined a new retracker.
- The SARM single-look waveform shall be defined as the convolution:

$$W(\tau_i, f_a) = P_{FS}(\tau_i, f_a) * *S_{PTR}(\tau_i, f_a) * \left(\frac{c}{2}\right) P_z\left(\frac{c}{2}\right)$$

• Where  $\tau$  refers to delay time, or range window, with respect MSL;  $f_a$  corresponds to a Doppler bin within the burst;  $P_{FS}$  is the average flat surface response;  $S_{PTR}$  the radar system point target response; and  $P_z$ the surface elevation pdf. The major difference with respect to conventional altimetry is that  $S_{PTR}$  is defined as:

$$S_{PTR}(\tau_i, f_a) = \operatorname{sinc}^2(Tf_a) \operatorname{sinc}^2(\tau_u s \tau)$$

• Where T is the long-track boxcar time,  $\tau_u$  the useful pulse length and s the chirp slope.



#### SAMOSAO4: SAR Altimeter re-tracker

- A SAR altimeter re-tracker has been developed based on the analytical expression derived in the previous objective
- Good agreement was found between theoretical & numerical SAR waveforms, but the multi-looking methodology is still being optimised
- A DPM for the Sentinel-3 SRAL retracker has been delivered.

# SAMOSA LRM & SAR L1B Scenario C1 (0.1/4/5 m swh)



(10

200

### SAMOSA Single-look SAR Alt Delay-Doppler Map

- New theoretical model developed by Starlab within SAMOSA
- Provides numerical and analytical solutions for SAR Altimeter Delay Doppler Maps for single burst.





### **SAMOSAMulti-looking**



Cristina Martin-Puig

ESA Living Planets

# SAMOSA Prototype SAR Alt ocean retracker

- Single-look DDA model and multi-looking implemented at NOC as prototype SAR Alt ocean re-tracker
- Applied to CRYMPS
- Good fit between theoretical and CRYMPS waveforms
- Multi-looking & noise being optimised



#### SAMOSAO5: Coastal & Inland Waters

- What improvements does SAR mode altimetry offer for coastal and inland waters? Two types of scenario have been modelled:
  - Lakes
  - Coastal Zones

# SAMOSA Lakes Scenario for CRYMPS





**Retrieved Output** 



CRYMPS simulator built to simulate echoes from CryoSat2

- Scenarios designed for inland water
- Lakes scenario for CRYMPS run: to test response to bright lake targets
- DEM from SRTM 1" USA data
- Sigma0 model mix of real and simulated data

#### **SAMOSACoastal zone results**



#### DEM picture courtesy of D.Brockley MSSL





#### Cristina Martin-Puig

ESA Living Planets

### SAMOSAO6: ASIRAS and SAMOSA

- Evaluate the SAMOSA re-tracker against real SAR altimetry data
- Gain information on the differences between spaceand airborne data
- Processing scheme for airborne data to allow comparison with space-borne data

### **SAMOSASAMOSA** main progress

- Investigations to reduce SAR mode to LRM
- Definition of SAR Altimetry waveform model
- Development of SAR retracker
- CRYMPS investigations
- Analysis of performance of SAR retracker with ASIRAS data

#### **Thanks For Your Attention!**

#### **Contact details:** David Cotton

SatOC Stockport, UK +44 161 439 0833 http://www.satoc.eu

d.cotton@satoc.eu

