

HYDROCOASTAL

SAR/SARin Radar Altimetry for Coastal Zone and Inland Water Level

Product Specification Document Deliverable D2.3 -

Sentinel-3 and Cryosat SAR/SARin Radar Altimetry for Coastal Zone and Inland Water ESA Contract 4000129872/20/I-DT

> Project reference: HYDROCOASTAL_ESA_PSD_D2.3 Issue: 1.1

> > 08 October 2020

Project ref.: HYDROCOASTAL_ESA_PSD_D2.3 Issue: 1.1 Date: 08/10/20 Page: 2 of 35

This page has been intentionally left blank

Change Record

Date	Issue	Section	Page	Comment
25/06/20	1.0	all	all	Initial version of the document to distribute and share among the different partners
08/10/220	1.1	all	all	General update according to ESA review and recent work.

Control Document

Process	Name	Date
Written by:	Albert Garcia-Mondéjar, Ferran Gibert, Ester Vendrell	08/10/20
Checked by	David Cotton	08/10/20
Approved by:		

Subject	Radar Altimetry for Coastal Zone and Inland Water Level		Project HydroCoastAL
Author		Organisation	Internal references
Albert Garcia-Mondejar, Ferran Gibert, Ester Vendrell		isardSAT	HYDROCOASTAL_ESA_PSD
Joana Fernandes		UPorto	
Michele Scagliola		Aresys	
Ole Andersen, Karina Nielsen, Heidi Ranndal		DTU Space	
Pierre Fabry		Along Track	
Luciana Fenoglio-Marc		U Bonn	
Marcello Passaro		тим	
Christine Gommenginger		NOC	
Nicolas Bercher		AltHydroLab	

Project ref.: HYDROCOASTAL_ESA_PSD_D2.3 Issue: 1.1 Date: 08/10/20

Page: 4 of 35

Angelica Tarpanelli	CNR-IRPI	
Elena Zakharova	NUIM	

	Signature	Date
For HydroCoastAL team		
For ESA		

Table of Contents

Product definitions9Master L2 enhanced product9Intermediate L2 enhanced product10Auxiliary products10Sentinel 3 L2 standard10CryoSat-2 L211Other products that may be used (on the global production)11Variable types11NetCDF format file12Files alignment13L2 enhanced product Format Specifications13L2 enhanced product variables13L2 global attributes22L3 Inland water Format Specifications24L3 Products variables24L3 Products variables24L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space77	Introduction	7
Document Organisation7Reference Documents7General definitions9Product definitions9Master L2 enhanced product10Auxiliary products10Sentinel 3 L2 standard10CryoSat-2 L211Other products that may be used (on the global production)11Variable types11NetCDF format file12Files alignment12L2 enhanced product variables13L2 enhanced product variables13L2 global attributes22L3 Inland water Format Specifications24L3 Global attributes26L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format Specifications28L4 NetCDF format28L4 Products variables28	The HYDROCOASTAL Project	7
Reference Documents7General definitions9Product definitions9Master L2 enhanced product9Intermediate L2 enhanced product10Auxiliary products10Sentinel 3 L2 standard10CryoSat-2 L211Other products that may be used (on the global production)11Variable types11NetCDF format file12Files alignment12L2 enhanced product Format Specifications13L2 enhanced product variables13L2 global attributes22L3 Inland water Format Specifications24L3 Products variables26L3 Products variables27L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format Specifications28L4 NetCDF format28L4 NetCDF format28L4 Products variables28	Scope of this Document	7
General definitions9Product definitions9Master L2 enhanced product9Intermediate L2 enhanced product10Auxiliary products10CryoSat-2 L211Other products that may be used (on the global production)11Variable types11NetCDF format file12Files alignment12L2 enhanced product variables13L2 enhanced product variables13L2 enhanced product variables22L3 Inland water Format Specifications24L3 RetCDF format24L3 RetCDF format27L3 Processing variants27L3 Processing by AHL27L4 River discharge Format28L4 NetCDF format28L4 Products variables28	Document Organisation	7
Product definitions9Master L2 enhanced product9Intermediate L2 enhanced product10Auxiliary products10Sentinel 3 L2 standard10CryoSat-2 L211Other products that may be used (on the global production)11Variable types11NetCDF format file12Files alignment12L2 enhanced product Format Specifications13L2 enhanced product variables13L2 enhanced product variables13L2 global attributes22L3 Inland water Format Specifications24L3 Ordocts variables24L3 Products variables24L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format Specifications28L4 NetCDF format28L4 NetCDF format28L4 Products variables28	Reference Documents	7
Master L2 enhanced product9Intermediate L2 enhanced product10Auxiliary products10Sentinel 3 L2 standard10CryoSat-2 L211Other products that may be used (on the global production)11Variable types11NetCDF format file12Files alignment12L2 enhanced product Format Specifications13L2 enhanced product variables13L2 enhanced product variables13L2 global attributes22L3 Inland water Format24L3 Ordocts variables24L3 Products variables26L3 Processing variants27L3 Processing variants27L4 River discharge Format28L4 NetCDF format28L4 NetCDF format28L4 NetCDF format28L4 Products variables28	General definitions	9
Intermediate L2 enhanced product10Auxiliary products10Sentinel 3 L2 standard10CryoSat-2 L211Other products that may be used (on the global production)11Variable types11NetCDF format file12Files alignment12L2 enhanced product Format Specifications13L2 enhanced product variables13L2 global attributes22L3 Inland water Format Specifications24L3 NetCDF format24L3 Products variables26L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format28L4 NetCDF format28L4 Products variables28	Product definitions	9
Auxiliary products10Sentinel 3 L2 standard10CryoSat-2 L211Other products that may be used (on the global production)11Variable types11NetCDF format file12Files alignment12L2 enhanced product Format Specifications13L2 enhanced product variables13L2 global attributes22L3 Inland water Format Specifications24L3 Products variables24L3 Products variables26L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format Specifications28L4 NetCDF format28L4 NetCDF format28L4 Products variables28	Master L2 enhanced product	9
Sentinel 3 L2 standard10CryoSat-2 L211Other products that may be used (on the global production)11Variable types11NetCDF format file12Files alignment12L2 enhanced product Format Specifications13L2 enhanced product variables13L2 enhanced product variables13L2 global attributes22L3 Inland water Format Specifications24L3 NetCDF format24L3 Products variables26L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format Specifications28L4 NetCDF format28L4 NetCDF format28L4 NetCDF format28L4 NetCDF format28L4 Products variables28	Intermediate L2 enhanced product	10
CryoSat-2 L211Other products that may be used (on the global production)11Variable types11NetCDF format file12Files alignment12L2 enhanced product Format Specifications13L2 enhanced NetCDF format13L2 enhanced product variables13L2 global attributes22L3 Inland water Format Specifications24L3 NetCDF format24L3 NetCDF format24L3 Products variables26L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format28L4 NetCDF format28L4 NetCDF format28L4 NetCDF format28L4 Products variables28	Auxiliary products	10
Other products that may be used (on the global production)11Variable types11NetCDF format file12Files alignment12L2 enhanced product Format Specifications13L2 enhanced NetCDF format13L2 enhanced product variables13L2 global attributes22L3 Inland water Format Specifications24L3 NetCDF format24L3 Products variables24L3 Products variables26L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format28L4 NetCDF format28L4 Products variables28	Sentinel 3 L2 standard	10
Variable types11NetCDF format file12Files alignment12L2 enhanced product Format Specifications13L2 enhanced product Variables13L2 enhanced product variables13L2 global attributes22L3 Inland water Format Specifications24L3 NetCDF format24L3 Products variables24L3 Global attributes26L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format Specifications28L4 NetCDF format28L4 Products variables28L4 Products variables28L4 Products variables28L4 Products variables28L4 Products variables28	CryoSat-2 L2	11
NetCDF format file12Files alignment12L2 enhanced product Format Specifications13L2 enhanced NetCDF format13L2 enhanced product variables13L2 global attributes22L3 Inland water Format Specifications24L3 NetCDF format24L3 Products variables24L3 Global attributes26L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format Specifications28L4 NetCDF format28L4 Products variables28L4 Products variables28L4 Products variables28L4 Products variables28L4 Products variables28L4 Products variables28	Other products that may be used (on the global production)	11
Files alignment12L2 enhanced product Format Specifications13L2 enhanced NetCDF format13L2 enhanced product variables13L2 global attributes22L3 Inland water Format Specifications24L3 NetCDF format24L3 Products variables24L3 Oldbal attributes26L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format Specifications28L4 NetCDF format28L4 Products variables28L4 Products variables28L4 Products variables28	Variable types	11
L2 enhanced product Format Specifications13L2 enhanced NetCDF format13L2 enhanced product variables13L2 global attributes22L3 Inland water Format Specifications24L3 NetCDF format24L3 Products variables24L3 Oldal attributes26L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format Specifications28L4 NetCDF format28L4 Products variables28	NetCDF format file	12
L2 enhanced NetCDF format13L2 enhanced product variables13L2 global attributes22L3 Inland water Format Specifications24L3 NetCDF format24L3 Products variables24L3 Global attributes26L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format Specifications28L4 NetCDF format28L4 Products variables28	Files alignment	12
L2 enhanced product variables13L2 global attributes22L3 Inland water Format Specifications24L3 NetCDF format24L3 Products variables24L3 Global attributes26L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format Specifications28L4 NetCDF format28L4 Products variables28	L2 enhanced product Format Specifications	13
L2 global attributes22L3 Inland water Format Specifications24L3 NetCDF format24L3 Products variables24L3 Global attributes26L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format Specifications28L4 NetCDF format28L4 Products variables28	L2 enhanced NetCDF format	13
L3 Inland water Format Specifications24L3 NetCDF format24L3 Products variables24L3 Global attributes26L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format Specifications28L4 NetCDF format28L4 Products variables28	L2 enhanced product variables	13
L3 NetCDF format24L3 Products variables24L3 Global attributes26L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format Specifications28L4 NetCDF format28L4 Products variables28	L2 global attributes	22
L3 Products variables24L3 Global attributes26L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format Specifications28L4 NetCDF format28L4 Products variables28	L3 Inland water Format Specifications	24
L3 Global attributes26L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format Specifications28L4 NetCDF format28L4 Products variables28	L3 NetCDF format	24
L3 Processing variants27L3 Processing by AHL27L3 Processing by DTU Space27L4 River discharge Format Specifications28L4 NetCDF format28L4 Products variables28	L3 Products variables	24
L3 Processing by AHL 27 L3 Processing by DTU Space 27 L4 River discharge Format Specifications 28 L4 NetCDF format 28 L4 Products variables 28	L3 Global attributes	26
L3 Processing by DTU Space27L4 River discharge Format Specifications28L4 NetCDF format28L4 Products variables28	L3 Processing variants	27
L4 River discharge Format Specifications28L4 NetCDF format28L4 Products variables28	L3 Processing by AHL	27
L4 NetCDF format28L4 Products variables28	L3 Processing by DTU Space	27
L4 Products variables 28	L4 River discharge Format Specifications	28
	L4 NetCDF format	28
L4 Global attributes 29	L4 Products variables	28
	L4 Global attributes	29

Project ref.: HYDROCOASTAL_ESA_PSD_D2.3 Issue: 1.1 Date: 08/10/20 Page: 6 of 35

References	31
List of Acronyms	32

1 Introduction

1.1 The HYDROCOASTAL Project

The HYDROCOASTAL project is a project funded under the ESA EO Science for Society Programme, and aims to maximise the exploitation of SAR and SARin altimeter measurements in the coastal zone and inland waters, by evaluating and implementing new approaches to process SAR and SARin data from CryoSat-2, and SAR altimeter data from Sentinel-3A and Sentinel-3B.

One of the key objectives is to link together and better understand the interactions processes between river discharge and coastal sea level. Key outputs are global coastal zone and river discharge data sets, and assessments of these products in terms of their scientific impact.

1.2 Scope of this Document

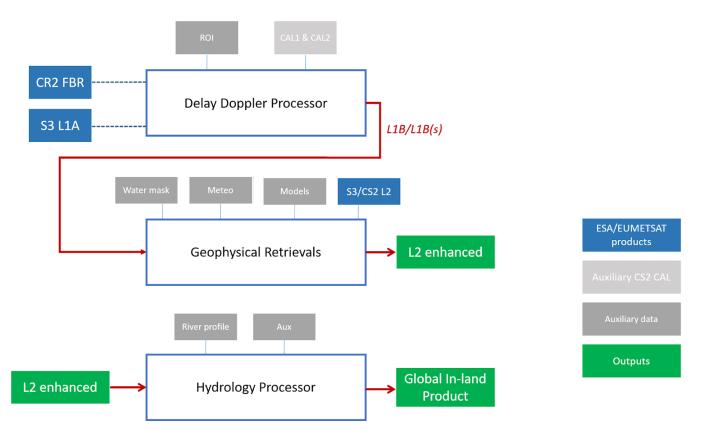
The scope of this document is to identify and specify the format of the data products generated within the HYDROCOASTAL project

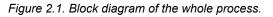
1.3 Document Organisation

This document is organised as follows:

- <u>Section 1</u> (this section) is a short introduction defining the scope of this report.
- <u>Section 2</u> includes the general definition of products, variables and file formats.
- <u>Section 3</u> includes L2 products format specifications
- <u>Section 4</u> includes L3 products format specifications
- <u>Section 5</u> includes L4 products format specifications
- Last sections include <u>references</u> and the <u>list of acronyms</u>.

1.4 Reference Documents


- RD-1 HydroCoastAL Proposal: SAR/SARin Radar Altimetry for Coastal Zone and Inland Water Level. Proposal, January 2020.
- RD-2 ESA. "Sentinel-3 Product Data Format Specification SRAL/MWR Level 2 products", ref. S3IPF.PDS.003.2, issue 2.12, 05 March 2018.
- RD-3 Advanced Computer Systems (ACS). CryoSat Ice netCDF L2 Product Format Specification [PFS-I-L2], C2-RS-ACS-ESL-5265 Issue: 1.6, 2019
- RD-4 HYDROCOASTAL Deliverable 1.3 ATBD (Algorithm Theoretical Basis Document). V1.1 08/10/2020, isardSAT and HYDROCOASTAL team.


RD-5 HYDROCOASTAL Deliverable 2.1 IODD (Input Output Data Definitions). V1.1 08/10/2020, isardSAT and HYDROCOASTAL team.

2 General definitions

2.1 **Product definitions**

A block diagram with the main input and output products is shown in Figure 2.1.

2.1.1 Master L2 enhanced product

The master output product is the main product where all the partners will be contributing with the outputs of their algorithms. It will initially be defined as an *empty* product, including essentially the L1B/L1B(s) waveforms and some parameters of the official L2 products. After integrating the contribution from each L2 partner and some geophysical corrections, the final product will be labeled L2 Master enhanced *full* product. Depending on the ROI, the final Master L2 enhanced will include outputs from either Coastal retrackers or Inland retrackers, as shown in Figure 2.2.

Project ref.: HYDROCOASTAL_ESA_PSD_D2.3 Issue: 1.1 Date: 08/10/20 Page: 10 of 35

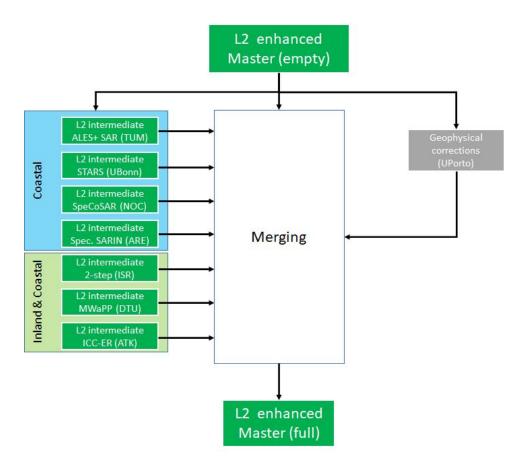


Figure 2.2. Block diagram of the L2 data flow.

2.1.2 Intermediate L2 enhanced product

The products that each of the partners involved in the Retracking needs to generate. The list of parameters will be different depending on the contribution that each of them will need to do. A block diagram with the interaction of the Intermediate L2 enhanced products and the Master L2 enhanced product is found in Figure 2.2.

2.1.3 Auxiliary products

2.1.3.1 Sentinel 3 L2 standard

It will be used as an input to get the geophysical corrections that are not covered by the HydroCoastAL team and to get the outputs from the ocean retracker. The specific geophysical corrections are specified in Table 3.2. Its product format can be checked in the following link: <u>Sentinel 3 L2 Product Format Specification</u> [RD-2].

2.1.3.2 CryoSat-2 L2

It will be used as an input to get the geophysical corrections that are not covered by the HydroCoastAL team and to get the outputs from the ocean retracker. The specific geophysical corrections are specified in Table 3.2. Its product format can be checked in the following link: <u>CryoSat Ice netCDF L2 Product Format Specification [RD-3]</u>.

2.1.3.3 Other products that may be used (on the global production)

<u>Global River Widths from Landsat (GRWL) Database</u> (Allen et al., 2018). A line layer shapefile with river centerlines and information regarding the width of the river.

2.1.3.3.1 Water Masks

Available global water mask products:

The occurrence product from the Global Surface Water Explorer <u>https://global-surface-water.appspot.com/download</u> (Pekel et al., 2016). This product is based on Landsat imagery and contains the likelihood of water as a percentage with a pixel resolution of 30 m.

HydroLakes <u>https://hydrosheds.org/page/hydrolakes</u> (Lehner et al., 2008). A polygon layer shapefile mask of 1.4 million global distributed lakes.

2.2 Variable types

Variable type	Description	Range
bl	boolean	True, False
str	string of characters	
uc	8-bit unsigned integer (ubyte) 0 to 255	
sc	8-bit signed integer (byte) -128 to 127	
us	16-bit unsigned short integer 0 to 65535	
SS	16-bit signed short integer -32768 to 32767	
ul	32-bit unsigned long integer 0 to 4294967295	

sl	32-bit signed long integer	-2147483648 to 2147483647
sll	64-bit signed "long long" integer	-9223372036854775808 to 9223372036854775807
fl	32-bit single precision floating point1.17549e-383.4028e+38(r	
do	64-bit double precision floating point	2.22e-308(min) 1.79e+308(max)

2.3 NetCDF format file

The NetCDF format has been lately widely used to provide remote sensing data, especially in the oceanographic framework. The main advantages of such encapsulating data format are its flexibility in the definition/creation/access of data, its transversal capability to share machine/platform-independent data and their self-describing characteristics. Thanks to such potentialities and ease in data sharing such format has been selected to provide the official distributed L1A, L1BS, L1B, and L2 for the Sentinel 3 and Sentinel 6 missions and it has been incorporated in the CryoSat-2 Baseline D production.

A NetCDF file is composed by the following elements:

- Dimensions: used to represent a real physical dimension (e.g., time, latitude, longitude, or height) of to index other quantities (e.g., number of waveforms or samples). A dimension has both a name and a length.
- Variables: used to store the data in a NetCDF file. A variable corresponds to an array of values of the same type. Each variable is completely defined by its name, data type and shape (described by the list of dimensions). A scalar value is defined as a 0-dimensional array. A variable can also contain related attributes, which can be added, deleted or modified once the variable has been created.
- Attributes: used to keep information of the data (metadata). Generally, they provide information about a specific variable. These are identified by the name of the variable, jointly with the name of the attribute (e.g., units, scale factor, or offset to be added).
- General attributes: used to provide a global description of the dataset as a whole.

2.4 Files alignment

L2 master and intermediate product files from the HydroCoastAL processor are synchronized/aligned in (1) files number and (2) number of records per files (i.e., variables share dim 0 of same length). Time, location and record number variables are used to link records from these product files.

3 L2 enhanced product Format Specifications

3.1 L2 enhanced NetCDF format

L2 products are compliant with the NetCDF-4 format, following similar variable convention names as the ones provided in Sentinel-3 format product specifications [RD-2]. A NetCDF file contains dimensions, variables, attributes, and global attributes as described in <u>Section 2.3</u>. The global attributes description can be found in <u>Section 3.3</u>.

Dimension name	Description	Value
time	Number of along track records (L2 measurements) in the file. Record frequency is 20Hz.	# of Ku records
Ns	Number of samples in a waveform. It is 128*zp for SAR and 512*zp for SARIn (SARIn always has zp=2).	128*zp (SAR) 1024 (SARIn)
NI	Maximum number of looks per stack	256 (SAR) 64 (SARIn)

Table 3.1 Dimensions for Level 2 enhanced product

3.2 L2 enhanced product variables

A description of the L2 Master Enhanced product variables is found in Table 3.2. Variables are thematically grouped. For the group called "*Common parameters for each retrackers*", each variable suffix "<RET>" is to be replicated for each retracker developer according to the following notation:

- **ISR** for isardSAT 2-step analytical retracker
- **ARE** for Aresys, for Specialised SARin retracker
- **DTU** for DTU's MWaPP retracker
- ATK for Along-Track's ICC-ER empirical retracker
- UBO for UBonn's Statistical STARS retracker
- TUM for TUM's ALES+ for SAR retracker
- NOC for NOC's Specialised Coastal SAR retracker
- ESA for the ocean retracker extracted from official products.

It is important to remark the differences between the different L2 Enhanced Master file versions:

- 1. The *empty* version of the product contains only the variables tagged as *DDP*, *ESA* and *GeoCor* in Table 3.2. This is the version provided as input to each L2 retracker partner.
- 2. Each L2 Enhanced Master *intermediate* file is the result of adding the output parameters of a specific L2 retracker to an *empty* L2 Enhanced Master file. The number of L2 *intermediate* files depends on the number of L2 retrackers: each L2 tracker produces its own L2 *intermediate* file. The list of variables inside a specific L2 *intermediate* file is the number of variables in the *empty* version plus the variables added by the specific retracker as identified in the column "Filled by" in Table 3.2. Each L2 *intermediate* file name must include the L2 retracker identifier, as defined in HYDROCOASTAL Deliverable 2.1 IODD [RD-5] Section 4.3.
- 3. The *full* version of the product integrates all the L2 *intermediate* files generated from a specific L2 *empty* file and incorporates the Geophysical corrections from UPorto.

For the geophysical corrections module, the value "Uporto" in the "Filled by" column corresponds to the variables generated by the University of Porto while "GeoCor" means that the variables are extracted from the L2 official products. Details of the L2 variables selected and the process applied to them can be found in the HYDROCOASTAL Deliverable 2.1 IODD [RD-5] and in the HYDROCOASTAL Deliverable 1.3 ATBD respectively [RD-4].

Var name	Description	units	Туре	Dims	Filled by
time	Time at surface of the along track measurement (at the reference point of the tracking window position).	second s	do	time	DDP
seq_count	Record sequence counter	count	us	time	DDP
lat	Latitude of measurement at nadir [-90, +90]: Positive at North, Negative at South	degrees	sl	time	DDP
lon	Longitude of measurement at nadir [-180, +180]: Positive at East, Negative at West	degrees	sl	time	DDP
alt	Altitude of the satellite Centre of Mass	meters	sl	time	DDP
range	Reference tracker range corrected for USO frequency drift and internal path correction	meters	sl	time	DDP
roll	Roll mispointing measured by STRs and post-processed by AOCS or by ground	degrees	sl	time	DDP

Table 3.2 L2 netCDF product variables.	The colors are indicative of the variable provider.

	facility.				
pitch	Pitch mispointing measured by STRs and post-processed by AOCS or by ground facility.	degrees	sl	time	DDP
yaw	Yaw mispointing measured by STRs and post-processed by AOCS or by ground facility.	degrees	sl	time	DDP
scale_factor	Scaling factor in order to retrieve sigma-0. It includes antenna gains and geometry satellite - surface. It is not applied to waveforms	dB	sl	time	DDP
doppler_freq_s ar	Doppler frequencies used to calculate the Doppler beams	degrees	sl	time* NI	DDP
velocity_x	Satellite velocity vector: x component	m/s	fl	time	DDP
velocity_y	Satellite velocity vector: y component	m/s	fl	time	DDP
velocity_z	Satellite velocity vector: z component	m/s	fl	time	DDP
range_migratio n_corr	Slant range correction for each beam in the stack	m	do	time* NI	DDP
altitude_rate	Altitude rate at 20Hz	m/s	sl	time	DDP
RIP_sar	Integrated stack in fast time dimension	Watt	fl	time* NI	DDP
look_angle_star t	Look angle of the first contributing look/beam (Look angle is defined as angle between nadir satellite and the given surface for that beam or look)	radians	SS	time	DDP
look_angle_sto p	Look angle of the last contributing look/beam (Look angle is defined as angle between nadir satellite and the given surface for that beam or look)	radians	SS	time	DDP
burst_nb_start	Burst index of the first contributing look	count	SS	time	DDP
burst_nb_stop	Burst index of the last contributing look	count	SS	time	DDP
looks_i	I component for the looks of the stack	count	SC	time	DDP

Project ref.: HYDROCOASTAL_ESA_PSD_D2.3 Issue: 1.1 Date: 08/10/20 Page: 16 of 35

			-	-	,
				* Ns* NI	
looks_q	Q component for the looks of the stack	count	sc	time * Ns* NI	DDP
i_scale_factor	The i-samples scaling factor, computed in order to best fit the i-samples within 1 byte. The scaling, needed to convert the looks_i into sqrt(watt), is applied as follows: looks_i_sqr_watt (ku_rec,NI, Ns) = looks_i (ku_rec,NI, Ns) * i_scale_factor(ku_rec,NI)	sqrt Watt / count	fl	time *NI	DDP
q_scale_factor	The q-samples scaling factor, computed in order to best fit the q-samples within 1 byte. The scaling, needed to convert the looks_q into sqrt(watt), is applied as follows: looks_q_sqr_watt (ku_rec,NI, Ns) = looks_q (ku_rec,NI, Ns) * q_scale_factor(ku_rec,NI)	sqrt Watt / count	fl	time *NI	DDP
looks_i_maske d	I component for the looks of the stack after masking.	count	sl	time * Ns* NI	DDP
looks_q_maske d	Q component for the looks of the stack after masking.	count	sl	time * Ns* NI	DDP
waveform_i2q2	The fully calibrated, multi-looked power waveform. The final scaling is given in the variable "waveform_scale_factor", in order to best fit the waveform into 2 bytes	count	sl	time * Ns	DDP
waveform_scal e_factor	The waveform scaling factor, computed in order to best fit each waveform within 2 bytes. The scaling, needed to convert the waveform into Watt, is applied as follows: waveform_i2q2_watt(ku_rec,	Watt / count	fl	time	DDP

Project ref.: HYDROCOASTAL_ESA_PSD_D2.3 Issue: 1.1 Date: 08/10/20 Page: 17 of 35

	1		•		
	Ns) = waveform_i2q2 (ku_rec, Ns) * waveform_scale_factor (ku_rec)				
phase_differen ce	Phase difference (Only for SARIn mode)	rad	fl	time* Ns	ESA
coherence	Coherence (Only for SARIn mode)	count	fl	time* Ns	ESA
lon_p	Longitude of satellite platform [-180;+180] (Only for SARIn mode)	degrees	do	time	ESA
lat_p	Latitude of satellite platform [-90;+90] (Only for SARIn mode)	degrees	do	time	ESA
	Geophysical Corrections and n	netadata			
h_surf	Altitude above sea level at which the DTC (upt_dry_tropo) and WTC (gpd_wet_tropo) have been computed	m	fl	time	UPorto
upt_dry_tropo	Dry Tropospheric Correction from UPorto	m	fl	time	UPorto
gpd_wet_tropo	Wet Tropospheric Correction from UPorto	m	fl	time	UPorto
gpd_wet_tropo _flag	Data source flag for the Wet Tropospheric Correction from UPorto		uc	time	UPorto
geoid_EIGEN_ 6C4	Geoid heights from EIGEN-6C4 model	m	fl	time	UPorto
mod_dry_tropo _cor	Dry tropospheric correction (Only for CS2)	m	SS	time	GeoCor.
mod_wet_tropo _cor	Wet tropospheric correction (Only for CS2)	m	SS	time	GeoCor.
mod_dry_tropo _cor_zero_altit ude	Model dry tropospheric correction at zero altitude (Only for S3)	m	SS	time	GeoCor.
mod_dry_tropo _cor_meas_altit	Model dry tropospheric correction at measurement altitude	m	SS	time	GeoCor.

Project ref.: HYDROCOASTAL_ESA_PSD_D2.3 Issue: 1.1 Date: 08/10/20 Page: 18 of 35

ude	(Only for S3)				
mod_wet_tropo _cor_zero_altit ude	Model wet tropospheric correction at zero altitude (Only for S3)	m	SS	time	GeoCor.
mod_wet_tropo _cor_meas_altit ude	Model wet tropospheric correction at measurement altitude (Only for S3)	m	SS	time	GeoCor.
rad_wet_tropo_ cor	Radiometer wet tropospheric correction (Only for S3)	m	SS	time	GeoCor.
rad_wet_tropo_ cor_sst_gam	Radiometer wet tropospheric correction using SST and Gamma (Only for S3)	m	SS	time	GeoCor.
tb_238	Channel 1 main beam BT (Only for S3)	к	SS	time	GeoCor.
tb_365	Channel 2 main beam BT (Only for S3)	к	SS	time	GeoCor.
sig0_ocean	Corrected « ocean » backscatter coefficient (Only for S3)	dB	SS	time	GeoCor.
rad_surf_type	Radiometer-derived surface type (S3)		sc	time	GeoCor.
rain_flag	Altimeter rain flag (S3)		sc	time	GeoCor.
open_sea_ice_f lag	Ocean/sea-ice flag (Only for S3)		sc	time	GeoCor.
rad_along_trac k_avg_flag	Radiometer along-track averaging flag (Only for S3)		SC	time	GeoCor.
tb_238_quality_ flag	Quality flag for Channel 1 main beam BT (Only for S3)		sc	time	GeoCor.
tb_365_quality_ flag	Quality flag for Channel 2 main beam BT (Only for S3)		sc	time	GeoCor.
sig0_ocean_qu al	« Ocean » backscatter coefficient validity flag (Only for S3)		sc	time	GeoCor.

Project ref.: HYDROCOASTAL_ESA_PSD_D2.3 Issue: 1.1 Date: 08/10/20 Page: 19 of 35

inverse_baro	Inverse Barometric Correction	m	sl	time	GeoCor.
atm_cor_sig0	Atmospheric Attenuation Correction (Only for S3)	dB	SS	time	GeoCor.
GIM_iono	GIM Ionospheric Correction	m	sl	time	GeoCor.
altimeter_iono	Ionospheric Correction from the altimeter (Only for S3)	m	sl	time	GeoCor.
ocean_tide_got	Ocean Tide: Includes the corresponding the short-period part of the loading tide and equilibrium long-period ocean tide height (only for S3) (Only for S3)	m	sl	time	GeoCor.
ocean_tide_fes	Ocean Tide: Includes the corresponding the short-period part of the loading tide and equilibrium long-period ocean tide height (only for S3) (Only for S3)	m	sl	time	GeoCor.
load_tide_got	Load tide height for geocentric ocean tide (GOT solution) (Only for S3)	m	sl	time	GeoCor.
load_tide_fes	Load tide height for geocentric ocean tide (FES solution)	m	sl	time	GeoCor.
ocean_tide_eq	Equilibrium long-period ocean tide height	m	sl	time	GeoCor.
ocean_tide_no n_eq	Non-equilibrium long-period ocean tide height	m	sl	time	GeoCor.
solid_earth_tide	Solid Earth Tide	m	sl	time	GeoCor.
geocentric_pola r_tide	Geocentric Polar Tide	m	uc	time	GeoCor.
hf_fluct_cor	High frequency fluctuations of the sea surface topography	m	SS	time	GeoCor.

Project ref.: HYDROCOASTAL_ESA_PSD_D2.3 Issue: 1.1 Date: 08/10/20 Page: 20 of 35

sea_state_bias	Sea state bias correction	m	SS	time	GeoCor.
geoid	Geoid Height	m	uc	time	GeoCor.
MSS	Mean Sea Surface	m	uc	time	GeoCor
surf_type	0 open_ocean or semi-enclosed_seas, 1 enclosed_seas or lakes, 2 continental_ice, 3 land		SC	time	GeoCor.
	Common parameters for each r	etracker			
retracked_epoc h_ <ret></ret>	Estimated epoch in meters w.r.t center of the window (tracker range is given to the center of the window) using the <ret> retracker. (no geophysical corrections applied)</ret>	m	sl	time	Retrack
retracked_rang e_ <ret></ret>	Corrected range by the retracker offset (using <ret> retracker), the reference range includes already the USO frequency drift and the internal/instrument corrections. (no geophysical corrections applied)</ret>	m	sl	time	Retrack
retracked_Pu_< RET>	Retrieved power using the <ret> retracker.</ret>	dB	sl	time	Retrack
retracked_sig0 _ <ret></ret>	Backscattering coefficient computed from the retracked power once corrected by the sigma0 scaling factor (scale_factor)	dB	sl	time	Retrack
flags_ <ret></ret>	Flag indicating successful or failed retracking		sl	time	Retrack
	Specific parameters for the ret	rackers	-		
swh_ESA	Significant wave height	m	sl	time	Retr. ESA
ssha_ESA	Sea surface height anomaly	m	sl	time	Retr. ESA
swh_isr	Significant wave height	m	sl	time	Retr. ISR

misfit_analytical _isr	Correlation between the real waveform and the fitted one. It is the Pearson correlation coefficient expressed as percentage. Waveforms with values below 90% should be discarded.	percent	sl	time	Retr. ISR
swh_are	Significant Wave Height	m	sl	time	Retr. ARE
misfit_are	Misfit computed according to the following formula: sqrt(sum((L1B_wave-fitted_wave).^2))/s qrt(sum((L1B_wave).^2))	unitless	sl	time	Retr. ARE
num_peaks_dt u	Number of peaks in waveform	count	uc	time	Retr. DTU
dif_height_dtu	Difference from average peak height	m	sl	time	Retr. DTU
num_peaks_at k	Number of processed peaks in the waveform (math notation : M_{PWF}); this number being 0 or 1 for LRM and SARM.	count	uc	time	Retr. ATK
water_fraction_ atk	Fraction of water within the Doppler footprint of the altimetric measurement. This is the ratio, within the Doppler footprint, of the water surface vs. the surface of the Doppler footprint itself. It is computed by intersecting the ground projected Doppler footprint and the water mask.		ui	time	Retr. ATK
ind_pk_start_at k	first peak start indexe.	count	uc	time	Retr. ATK
ind_pk_stop_at k	first peak stop index.	count	uc	time	Retr. ATK
elv_rtk_atk	elevation of the retracked point above the reference ellipsoid (for SARIn mode	metres	SS	time	Retr. ATK

Project ref.: HYDROCOASTAL_ESA_PSD_D2.3 Issue: 1.1 Date: 08/10/20 Page: 22 of 35

	only)				
lat_rtk_atk	geodetic latitude of the retracked point	degrees	sl	time	Retr. ATK
lon_rtk_atk	longitude of the retracked point	degrees	sl	time	Retr. ATK
swh_ubo	Significant Wave Height	m	sl	time	Retr. UBO
ssb_ales_20_k u_tum	Sea State Bias correction specific to the ALES+ SAR Range output	m	[data type]	time	Retr. TUM
swh_noc	Significant Wave Height	m	sl	time	Retr. NOC
misfit_noc	misfit between SAR Waveform Model and SAR Waveform Data has been computed as: sqrt(1/128*sum(residual)^2)*100, where residuals are the differences between the fitted model waveform power and the data waveform power, normalized for the waveform power maximum value.	percent	sl	time	Retr. NOC

3.3 L2 global attributes

Table 3.3: L2 enhanced product Global attributes

Attribute name	Description	Format
Conventions	NetCDF convention	string
project_name	Name of the project (HydroCoastAL)	string
mission_name	Name of the mission	string
operation_mode	Name of the altimeter mode	string
altimeter_sensor_nam e	Name of the altimeter sensor	string
gnss_sensor_name	Name of the GNSS sensor	string

Project ref.: HYDROCOASTAL_ESA_PSD_D2.3 Issue: 1.1 Date: 08/10/20 Page: 23 of 35

doris_sensor_name	Name of the DORIS sensor	string
acq_station_name	Identification of the acquisition station	string
first_meas_time	UTC Date of the first measurement of the data set (YYYY-MM-DD HH:MM:SS.mmmmmm)	string
last_meas_time	UTC Date of the first measurement of the data set (YYYY-MM-DD HH:MM:SS.mmmmmm)	string
xref_altimeter_level1a	Name of the altimeter level 1a / FBR data file	string
ellipsoide_name	Ellipsoid name	string
semi_major_ellipsoid_ axis	Semi-major axis of the reference ellipsoid (meters)	UL
ellipsoid_flattening	Flattening coefficient of the reference ellipsoid	do
orbit_cycle_num	Cycle number (set to +000 if not used)	SS
orbit_REL_Orbit	Relative Orbit Number at sensing start time. If not used set to +00000	sl
orbit_ABS_Orbit_Start	Absolute Orbit Number at Product Start time	ul
orbit_Rel_Time_ASC_ Node_Start	Relative time since crossing ascending node time relative to start time of data sensing (seconds)	do
orbit_ABS_Orbit_Stop	Absolute Orbit Number at Product Stop Time	ul
reference_tracking_gat e	Index of the gate where the tracking window is referenced. It is 43, starting from 0, in for the products from Sentinel 3, 63 for the ones coming from SAR CryoSat-2 and 255 for SARIn. No zero padded waveforms considered.	us
DDP_processor	Indicates the DDP processor used.	string
Retrackers	Indicates the list of retrackers used in the L2 processor.	string

4 L3 Inland water Format Specifications

L3 products are Water Level data derived from L2 measurements confined by the auxiliary data sets such as global lake and river water masks. Each L3 record provides an estimation of river/lake water level for a given overflight over the waterbody as made by the satellite. Mean measurement location coordinates and mean overflight time of the involved L2 measurements are the space time coordinates of the L3 records.

For the Sentinel-3 repeat orbit missions, this leads to time series of water level.

For the CryoSat-2 non-repeat mission this leads to space-time series of water level.

L3 product files are organised as geographical tiles of squares of 10° square. A L3 product file may cover several unrelated waterbodies and basins, different sections of the same river, etc. L3 products are also waterbody/basin-agnostic.

4.1 L3 NetCDF format

L3 products are compliant with the NetCDF-4 format, following as much as possible similar variable convention names as the ones provided in Sentinel-3 format product specifications [RD-2]. A NetCDF file contains dimensions (this section), variables and their attributes (cf. section 4.2), and global attributes (cf. section 4.3).

The final L3 file format is not totally defined and is going to be agreed after PM1.

Dimension name	Description	Value
time	Number of water height values in the file (all time series merged), with a frequency related to the revisit period of the satellite over the water body.	# of points

4.2 L3 Products variables

L3 products are processed from various L2 datasets, including: CryoSat-2 SARM or CryoSat-2 SARINM and Sentinel-3 SARM L2 products, using outputs from various retrackers. In the tables below, variables which depend upon a specific so called "altimetric context" (i.e., specific: mission and/or altimeter frequency band and/or altimeter mode and/or retracker) are named using the following convention:

"<variable_name>_<mission>_<band>_<mode>_<retracker>"

E.g., for Water Level estimation derived from CryoSat-2 operating in Ku band, in SARIN mode and using outputs of the OCOG retracker, the variable name would be:

"water_level_cryosat2_ku_sin_ocog"

- Possible mission names are : 'cryosat2', 'sentinel3a', 'sentinel3b'
- Possible band names are : 'ku' (C-band from the Sentinel-3 satellites is not addressed in the frame of this project)

Possible retracker ID are : 'isr' (SHAPE 2-Step, isardSAT), '' (Specialised SARIN), 'algo3' (Empirical Narrow Peak), 'algo4' (SHAPE Empirical), 'algo5' (Stats STAR), 'algo6' (ALES+ for SAR), 'algo7' (SAR Coastal Zone)

Var name	Description	units	Тур е	Dims	Filled by
time	Mean Time at waterbody overflight.	decimal year	do	time	AHL or DTU
lat	Mean Latitude of waterbody overflight [-90, +90]: Positive at North, Negative at South.	degrees	sl	time	AHL or DTU
lon	Mean Longitude of waterbody overflight [-180, +180]: Positive at East, Negative at West.	degrees	sl	time	AHL or DTU
mission_id	Identifier of the mission 1=CryoSat-2 ; 2=Sentinel-3.	n.a.	ui	time	AHL or DTU
altimeter_mode	Name of the altimeter mode: 1=LRM ; 2=SAR ; 3=SARIN ; 4=Degraded SARIN.	n.a.	ui	time	AHL or DTU
track_id	Sentinel-3 track number, FillValue for CryoSat-2.	NA	us	time	AHL or DTU
vs_id	Virtual station ID Sentinel-3 over rivers or lakes and CryoSat-2 over lakes There are usually several vs_id per river while there is always only one vs_id value per lake. Set to FillValue otherwise, for the case of CryoSat-2 over rivers.	n.a.	uc	time	AHL or DTU

Project ref.: HYDROCOASTAL_ESA_PSD_D2.3 Issue: 1.1 Date: 08/10/20 Page: 26 of 35

				1	
lake_name	DTU products only: Lake name taken from the lake mask, FillValue over rivers.	NA	uc	time	DTU
lake_area	DTU products only: Lake area taken from the lake mask, FillValue over rivers.	km	us	time	DTU
water_level_< mission>_ <ban d>_<mode>_<r etracker></r </mode></ban 	Estimated Water Level w.r.t. geoid height variable.	m	sl	time	AHL or DTU
no_l2_meas_< mission>_ <ban d>_<mode>_<r etracker></r </mode></ban 	Number of L2 measurements involved in the computation of this L3 Water Level.	n.a.	ui	time	AHL or DTU
sd_l2_meas_< mission>_ <ban d>_<mode>_<r etracker></r </mode></ban 	Standard Deviation of L2 measurements involved in the computation of this L3 Water Level.	m	sl	time	AHL or DTU
geoid_height	Geoid Height from Eigen-6C4 model.	m	sl	time	AHL or DTU

Special note for the CryoSat-2/Rivers cases: Constructing a L3 time series product for CryoSat-2 is not a standard procedure and is not straight forward. As a global data product, we therefore suggest constructing and defining a CryoSat-2 based river L3 product. Here we suggest 3 candidate products. 1) Simply providing extracted L2 water levels based on a river mask. 2) Provide L2 water levels projected to the centerline of the river. 3) construct water level time series based on measurement from a river segment e.g. 50km. Whatever the selected option, the CryoSat-2/Rivers product shall be compatible with, and use, the present L3 product format. Agreement will be made during PM1.

4.3 L3 Global attributes

Attribute name	Description	Format
Conventions	NetCDF convention	string
provider	Name of the product provider (AHL or DTU)	string

Table 4.3: L3 product Global attributes

project_name	Name of the project (HydroCoastAL)	string
ellipsoid_name	Ellipsoid name	string
semi_major_ellipsoid_ axis	Semi-major axis of the reference ellipsoid (meters)	UL
ellipsoid_flattening	Flattening coefficient of the reference ellipsoid	do
water_mask_tiles	Name of Water Mask Tile(s) used for this L3 product	string
first_meas_time	UTC Date of the first measurement of the data set (YYYY-MM-DD HH:MM:SS.mmmmmm)	string
last_meas_time	UTC Date of the first measurement of the data set (YYYY-MM-DD HH:MM:SS.mmmmmm)	string

4.4 L3 Processing variants

L3 products are processed using two different L3 processors: one from AltiHydroLab.fr (AHL) and another one from DTU Space. Each processor uses different auxiliary datasets. This section describes these auxiliary datasets and the way they are used in the respective processors.

L3 Processing by AHL

L3 products are confined by e.g. the Global Surface Water Explorer (Pekel et al., 2016) and satellite tracks. More details are provided in the ATBD document of the project [RD-4], Section 6.

L3 Processing by DTU Space

L3 products are confined by e.g. the Global Surface Water Explorer (Pekel et al., 2016), the Sentinel-3A/B ground track locations and a subset of a river mask/river centerline product e.g. The Global River Widths from Landsat (GRWL) Database (Allen et al., 2018). The second global product is a CryoSat-2 + Sentinel-3A/B Lake product also provided in 10 by 10 degree tiles. This product will be confined by a subset of a lake shapefile mask e.g. the hydroshed hydroLakes product <u>https://hydrosheds.org/page/hydrolakes</u> (Lehner et al., 2008).

5 L4 River discharge Format Specifications

L4 water discharge product will include the information from the L3 River product relevant to the discharge retrieving site.

5.1 L4 NetCDF format

There is one L4 file for each water body (or ROI) addressed by the HydroCoastAL project:

Dimension name	Description	Value
time	Number of water height values in the file (all time series merged), with a frequency related to the revisit period of the satellite over the water body.	# of points

Table 5.1: Dimensions	for Level 4 product
-----------------------	---------------------

5.2 L4 Products variables

Table 5.2: L4 NetCDF product variables

Var name	Description	units	Туре	Dims	Filled by
time	Time of crossing	decimal year	do	time	DTU
lat	Mean Latitude of waterbody crossing [-90, +90]: Positive at North, Negative at South.	degrees	do	time	DTU
lon	Mean Longitude of waterbody crossing [-180, +180]: Positive at East, Negative at West.	degrees	do	time	DTU
geoid_height	Geoid Height from model	m	do	time	DTU
vs_id	Virtual station id. This will contain an A/B to indicate the mission. The same as in L3 "Virtual Station" product	NA	uc	time	DTU

Project ref.: HYDROCOASTAL_ESA_PSD_D2.3 Issue: 1.1 Date: 08/10/20 Page: 29 of 35

water_levelEstimated Water Level w.r.t. Geoid height.mdotimeDTUwater_dischar ge_RCWater Discharge estimated by Rating curve approachm3/sdotimeNUIMwater_dischar ge_BJWater Discharge estimated by Bjerklie approach. The field contains NaN if the retrievals failm3/sdotimeNUIMwater_dischar ge_ManWater Discharge estimated by Manning approach. The field contains NaN if the retrievals failm3/sdotimeNUIMflag_floodplain ge_Manflag[0,1], ==1 if floodplain flow is includedNAuitimeNUIMwater_dischar ge_MergWater Discharge estimated by merging altimetry and reflectance ratio C/M approach. The field contains NaN if the retrievals failm3/sdotimeNUIMwater_widthWater Width used in Bjerklie and Manning equations, retrieved from dynamic masks or from width- height relations. The field will contain NaN if both retrievals fail.m/mdotimeDTUwater_slopeWater slope used in Bjerklie and Manning equations, retrieved from L3 river product. The field will contain NaN if both retrievals fail.m/mdotimeDTUreflectance ratio_CMReflectance ratio C/M extracted by multispectral imageriesNAdotimeDTU			-		-	
ge_RCCurve approachm3/sdotimeNUIMwater_dischar ge_BJWater Discharge estimated by Bjerklie approach. The field contains NaN if the retrievals failm3/sdotimeNUIMwater_dischar ge_ManWater Discharge estimated by Manning approach. The field contains NaN if the retrievals failm3/sdotimeNUIMflag_floodplain _MANflag[0,1], ==1 if floodplain flow is includedNAuitimeNUIMwater_dischar ge_MergWater Discharge estimated by merging altimetry and reflectance ratio C/M approach. The field contains NaN if the retrievals failm3/sdotimeCNRwater_widthWater Width used in Bjerklie and Manning equations, retrieved from dynamic masks or from width- height relations. The field will contain NaN if both retrievals fail.mdotimeDTUwater_slopeWater slope used in Bjerklie and Manning equations, retrieved from L3 river product. The field will contain NaN if both retrievals fail.m/mdotimeDTUreflectanceReflectance ratio C/M extracted byNAdotimeDTU	water_level		m	do	time	DTU
ge_BJapproach. The field contains NaN if the retrievals failm3/sdotimewater_dischar ge_ManWater Discharge estimated by Manning approach. The field contains NaN if the retrievals failm3/sdotimeNUIMflag_floodplain _MANflag[0,1], ==1 if floodplain flow is includedNAuitimeNUIMwater_dischar ge_MergWater Discharge estimated by merging altimetry and reflectance ratio C/M approach. The field contains NaN if the retrievals failm3/sdotimeCNRwater_widthWater Width used in Bjerklie and Manning equations, retrieved from dynamic masks or from width- height relations. The field will contain NaN if both retrievals fail.mdotimeDTUwater_slopeWater slope used in Bjerklie and Manning equations, retrieved from L3 river product. The field will contain NaN if both retrievals fail.m/mdotimeDTUreflectanceReflectance ratio C/M extracted byNAdotimeCNR			m3/s	do	time	NUIM
ge_Manapproach. The field contains NaN if the retrievals failImage: Signal S		approach. The field contains NaN if the	m3/s	do	time	NUIM
MANincludedImage: State of the sta		approach. The field contains NaN if the	m3/s	do	time	NUIM
ge_Mergaltimetry and reflectance ratio C/M approach. The field contains NaN if the retrievals failImage: Contains NaN if the retrievals failwater_widthWater Width used in Bjerklie and Manning equations, retrieved from dynamic masks or from width- height relations. The field will contain NaN if both retrievals fail.mdotimeNUIM, ATKwater_slopeWater slope used in Bjerklie and Manning equations, retrieved from L3 river product. The field will contain NaN if both retrievals fail.m/mdotimeDTUreflectanceReflectance ratio C/M extracted byNAdotimeCNR	· ·	•••••	NA	ui	time	NUIM
Manning equations, retrieved from dynamic masks or from width- height relations. The field will contain NaN if both retrievals fail.ATKwater_slopeWater slope used in Bjerklie and Manning equations, retrieved from L3 river product. The field will contain NaN if both retrievals fail.m/mdotimeDTUreflectanceReflectance ratio C/M extracted byNAdotimeCNR	—	altimetry and reflectance ratio C/M approach. The field contains NaN if the	m3/s	do	time	CNR
Manning equations, retrieved from L3 river product. The field will contain NaN if both retrievals fail. reflectance Reflectance ratio C/M extracted by NA do time CNR	water_width	Manning equations, retrieved from dynamic masks or from width- height relations. The field will contain NaN if	m	do	time	,
······································	water_slope	Manning equations, retrieved from L3 river product. The field will contain NaN	m/m	do	time	DTU
			NA	do	time	CNR

5.3 L4 Global attributes

Attribute name	Description	Format
Conventions	NetCDF convention	string
project_name	Name of the project (HydroCoastAL)	string

Project ref.: HYDROCOASTAL_ESA_PSD_D2.3 Issue: 1.1 Date: 08/10/20 Page: 30 of 35

provider	Name of the product provider	string
Altimetric Missions	mission used for retrievals	string
Auxiliary Missions	missions and products used for retrievals	string
RC method	short description, reference to the document	string
Bjerklie method	short description, reference to the document	string
Manning method	short description, reference to the document	string
Merging method	short description, reference to the document	string
Water level method	short description, reference to the document	string

Project ref.: HYDROCOASTAL_ESA_PSD_D2.3 Issue: 1.1 Date: 08/10/20 Page: 31 of 35

6 References

- Allen, G. H., & Pavelsky, T. M. (2018). Global extent of rivers and streams. Science, 361(6402), 585–588. https://doi.org/10.1126/science.aat0636
- Lehner, B., Verdin, K., & Jarvis, A. (2008). New global hydrography derived from spaceborne elevation data. Eos, 89(10), 93–94. <u>https://doi.org/10.1029/2008EO100001</u>
- Pekel, J. F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422. <u>https://doi.org/10.1038/nature20584</u>

7 List of Acronyms

ACE2	Altimeter Corrected Elevations (vers. 2)		l'Hydrosphère (Centre of Topography of the Oceans
AD	Applicable Documents		and the Hydrosphere)
AGC	Automatic Gain Control	DAO	Data Access Object
AH	Alti-Hydro	DARD	Data Access Requirement Document
AHP	Alti-Hydro Product(s)	DDM	Delay-Doppler Map
AI	Action Item	DDP	Delay-Doppler Processor
AIM	Action Item Management (tool)	DEM	Digital Elevation Model
AltiKa	Altimeter in Ka band and bi-frequency radiometer	DGC	Doppler Ground Cell
	instrument	DPM	Detailed Processing Model
AMSR-	EAdvanced Microwave Scanning Radiometer-Earth	DPP	Data Procurement Plan
	Observing System	DTC	Dry Tropospheric Correction
ANA	Agência Nacional de Águas (National Water Agency, Brazil)	DTU	Danmarks Tekniske Universitet (Technical University of Denmark)
AoA	Angle of arrival	DVT	Data Validation Table
API	Application Programming Interface	ECMW	FEuropean Centre for Medium-Range Weather
AR	Acceptance Review		Forecasts
ASAP	As Soon As Possible	ECSS	European Cooperation for Space Standardisation
ASCII	American Standard Code for Information Interchange	EGM	Earth Gravitational Model
ATBD	Algorithm Technical Basis Document	ENVISA	AT ENVIronment SATellite
ATK	Along-Track S.A.S.	EO	Earth Observation
AVISO	Archivage, Validation et Interprétation des données	EOEP	Earth Observation Enveloppe Programme
	des Satellites Océanographiques	EOLi	Earth Observation Link
BIPR	Background Intellectual Property Right	EOLi-S	AEOLi-Stand Alone
CASH	Contribution de l'Altimetrie Spatiale à l'Hydrologie	EPN	EUREF Permanent Network
	(Contribution of Space Altimetry to Hydrology)	ERA	ECMWF ReAnalysis
CCN	Contract Change Notice	ESA	European Space Agency
CFI	Customer Furnished Item	EUREF	IAG Reference Frame Sub-Commission for Europe
CLASS	NOAA/Comprehensive Large Array-Data	FBR	Full Bit Rate
~ ~	Stewardship System	FFT	Fast Fourier Transform
CoG	Centre of Gravity	FR	Final Review
CPP	CryoSat-2 Processing Prototype (CNES)	FTP	File Transfer Protocol
CryoSa	tt-2 Altimetry satellite for the measurement of the polar ice caps and the ice thickness	FCUP	(from portuguese) <i>"Faculdade de Ciências da Universidade"</i> , Science faculty of the University of
CRISTA			Porto
	Topography ALtimeter	GDAL	Geospatial Data Abstraction Library
CRUCI	AL CRyosat-2 sUCcess over Inland wAter and Land	gdr, [I	
CSV	Comma Separated Values	GFZ	Deutsche GeoForschungsZentrum (German
СТОН	Centre de Topographie des Océans et de		Research Centre for Geosciences)

GNSS Global Navigation Satellite System	L4 Level-4
GOCE Gravity field and steady-state Ocean Circulation	
Explorer	LEGOS (french acr.) Laboratoire d'Études en Géophysique et
GPD GNSS-derived Path Delay	Océanographie Spatiale (Laboratory for Studies in
G-POD Grid Processing on Demand	Geophysics and Spatial Oceanography)
GPT2 Global Pressure and Temperature model (vers. 2)	LOTUS Preparing Land and Ocean Take Up from Sentinel-3
GPP Ground Processing Processor	LPS Living Planet Symposium
GPS Global Positioning System	LRM Low Resolution Mode
GRACE Gravity Recovery And Climate Experiment	LSE Least Square Estimator
GRDC Global Runoff Data Centre	LWL Lake Water Level
GRGS Groupe de Recherche de Géodésie Spatiale (Space	LWS Low Water Stage
Geodesy Research Group)	MARS Meteorological Archival and Retrieval System
GRLM Global Reservoir and Lake Monitor	MDL Minimum Description Length
GTN-L Global Terrestrial Network - Lakes	MMSE Minimum Mean Square Error
HDF-EOS Hierarchical Data Format - Earth Observing	MNDWI Modification of Normalised Difference Water Index
System	MoM Minutes of Meeting
HGT A SRTM file format	MPC Mission Performance Centre
HWS High Water Stage	MRC Mekong River Commission
HYCOS Hycos Hydraulics & Control Systems	MTR Mid Term Review
HYPE Hydrological Predictions for the Environment model	MSS Mean Square Slope
IAG International Association of Geodesy	MSS Mean Sea Surface
IDAN Intensity-Driven Adaptive-Neighbourhood	MWR Microwave Radiometer
IE Individual Echoes	NAVATT Navigation and Attitude
IGS International GNSS (Global Navigation Satellite	NDVI Normalised Difference Vegetation Index
Systems) Service	NDWI Normalised Difference Water Index
IM Internal Meeting (e.g. not with the client)	netCDF Network Common Data Form
IODD Input Output Data Document	NOAA National Oceanic and Atmospheric Administration
IPF Integrated Processing Facility	NR New Requirement (w.r.t. the SoW)
ISD isardSAT	NRT Near Real-Time
ITRF International Terrestrial Reference Frame	NWM Numerical Weather Model
IRF Impulse Response Function	OCOG Offset Centre of Gravity
Jason-1 Altimetry satellite, T/P follow-on	OPC One per Crossing
Jason-2 Altimetry satellite, also known as the « Ocear Surface Topography Mission » (OSTM), Jason-1	
follow-on	T/P, Jason-1, Jason-2 and Jason-3
Jason-3 Altimetry satellite, Jason-2 follow-on	OVS Orbit State Vector
Jason-CS Jason Continuity of Service	PDF Probability Density Function
KML Keyhole Markup Language	PEACHI Prototype for Expertise on AltiKa for Coastal,
KO Kick Off	Hydrology and Ice
L1A Level-1A	PEPS Sentinel Product Exploitation Platform (CNES)
L1B Level-1B	PISTACH (french acr.) Prototype Innovant de
L1B-S, L1BS Level-1B-S (aka, Stack data)	Système de Traitement pour les Applications
L2 Level-2	Cotières et l'Hydrologie
L3 Level-3	PMP Project Management Plan

POCCE	Processing Options Configuration Control Document	SOW	Statement Of Work
PR	Progress Report	SPR	Software Problem Reporting
PRF	Pulse Repetition Frequency	SPS	Sentinel-3 Surface Topography Mission System
PSD	Product Specification Document		Performance Simulator
PTR	Point Target Response	SRAL	SAR Radar Altimeter
PVP	Product Validation Plan	SRTM	Shuttle Radar Topography Mission
PVR	Product Validation Report	SSB	Sea State Bias
PVS	Pseudo Virtual Station(s)	SSMI/IS	S Special Sensor Microwave Imager (SSM/I) Sounder
PWF	Pseudo Waveform	SSO	Single Sign-On
RADS	Radar Altimeter Database System	Stack	Matrix of stacked Doppler beams
RB	Requirements Baseline (document)	STD	Standard Deviation
RCMC	Range Cell Migration Curve	STM	Sentinel-3 Surface Topography Mission
RCS	Radar Cross Section	STR	Star Tracker
RD	Reference Document	SUM	Software User Manual
RDSAR	Reduced SAR (also known as Pseudo-LRM)	SWBD	SRTM Water Body Data
RF	Random Forest	SWH	Significant Wave Height
RGB	Red, Green, Blue	TAI	Temps Atomique International (International Atomic
RID	Review Item Discrepancy		Time)
RIP	Range Integrated Power (of the MLD) sometimes	TBC	To Be Confirmed
	referred as Angular Power Response (APR)	TBD	To Be Done
RMS	Root Mean Square	TCWV	Total Column Water Vapour
ROI	(geographical) Region(s) Of Interest	TDS	Test Data Set
RP	Report Period (a month that is being reported into a Progress Report)	TMI	Tropical Rainfall Measuring Mission (TRMM) Microwave Imager
RSS	Remote Sensing Systems	TN	Technical Note
RWD	River Water Discharge	T/P	Topex/Poseidon (altimetry satellite)
RWL	River Water Level	TR	Technical Risk
SAMOS	SA SAR Altimetry MOde Studies and	UNESC	O United Nations Educational, Scientific and
	Applications		Cultural Organization
SARAL	In Indian "simple", in english "SAtellite for ARgos and	URL	Uniform Resource Locator
	AltiKa.	USGS	United States Geological Survey
SARIn	SAR Interferometric (CryoSat-2/SIRAL mode)	USO	Ultra Stable Oscillator
SAR	Synthetic Aperture Radar		
SARvat	Synthetic Aperture Nauar	UTC	Coordinated Universal Time
0/ 11 11 01		UTC UWM	Coordinated Universal Time Updated Water Mask
	ore SAR Versatile Altimetric Toolkit for Ocean Research & Exploitation		
	SAR Versatile Altimetric Toolkit for Ocean	UWM	Updated Water Mask
	ore SAR Versatile Altimetric Toolkit for Ocean Research & Exploitation	UWM VS	Updated Water Mask Virtual Station(s)
SCOOF	ore SAR Versatile Altimetric Toolkit for Ocean Research & Exploitation P SAR Altimetry Coastal & Open Ocean Performance Software Development Plan	UWM VS VH	Updated Water Mask Virtual Station(s) Vertical-Horizontal polarisation
SCOOF SDP SEOM	ore SAR Versatile Altimetric Toolkit for Ocean Research & Exploitation SAR Altimetry Coastal & Open Ocean Performance Software Development Plan	UWM VS VH VV	Updated Water Mask Virtual Station(s) Vertical-Horizontal polarisation Vertical-Vertical polarisation
SCOOF SDP SEOM SHAPE SI-MWF	ore SAR Versatile Altimetric Toolkit for Ocean Research & Exploitation SAR Altimetry Coastal & Open Ocean Performance Software Development Plan Scientific Exploitation of Operational Missions	UWM VS VH VV WBS	Updated Water Mask Virtual Station(s) Vertical-Horizontal polarisation Vertical-Vertical polarisation Work Breakdown Structure
SCOOF SDP SEOM SHAPE	ore SAR Versatile Altimetric Toolkit for Ocean Research & Exploitation SAR Altimetry Coastal & Open Ocean Performance Software Development Plan Scientific Exploitation of Operational Missions Sentinel-3 Hydrologic Altimetry PrototypE	UWM VS VH VV WBS WF	Updated Water Mask Virtual Station(s) Vertical-Horizontal polarisation Vertical-Vertical polarisation Work Breakdown Structure Waveform
SCOOF SDP SEOM SHAPE SI-MWF	ore SAR Versatile Altimetric Toolkit for Ocean Research & Exploitation SAR Altimetry Coastal & Open Ocean Performance Software Development Plan Scientific Exploitation of Operational Missions Sentinel-3 Hydrologic Altimetry PrototypE R Scanning Imaging MWR	UWM VS VH VV WBS WF WFR	Updated Water Mask Virtual Station(s) Vertical-Horizontal polarisation Vertical-Vertical polarisation Work Breakdown Structure Waveform Water Fraction Ratio
SCOOF SDP SEOM SHAPE SI-MWF SME SMHI SNAP	ore SAR Versatile Altimetric Toolkit for Ocean Research & Exploitation SAR Altimetry Coastal & Open Ocean Performance Software Development Plan Scientific Exploitation of Operational Missions Sentinel-3 Hydrologic Altimetry PrototypE R Scanning Imaging MWR Small and Medium-sized Enterprise Swedish Meteorological and Hydrological Institute SeNtinel Application Platform	UWM VS VH VV WBS WF WFR WMO	Updated Water Mask Virtual Station(s) Vertical-Horizontal polarisation Vertical-Vertical polarisation Work Breakdown Structure Waveform Water Fraction Ratio World Meteorological Organization
SCOOF SDP SEOM SHAPE SI-MWF SME SMHI	ore SAR Versatile Altimetric Toolkit for Ocean Research & Exploitation SAR Altimetry Coastal & Open Ocean Performance Software Development Plan Scientific Exploitation of Operational Missions Sentinel-3 Hydrologic Altimetry PrototypE R Scanning Imaging MWR Small and Medium-sized Enterprise Swedish Meteorological and Hydrological Institute	UWM VS VH VV WBS WF WFR WMO WP	Updated Water Mask Virtual Station(s) Vertical-Horizontal polarisation Vertical-Vertical polarisation Work Breakdown Structure Waveform Water Fraction Ratio World Meteorological Organization Work Package(s)

Project ref.: HYDROCOASTAL_ESA_PSD_D2.3 Issue: 1.1 Date: 08/10/20 Page: 35 of 35

XML eXtensible Markup Language

ZP Zero Padding