

HYDROCOASTAL

SAR/SARin Radar Altimetry for Coastal Zone and Inland Water Level

Processing Options Configuration Control Document

Sentinel-3 and Cryosat SAR/SARin Radar Altimetry for Coastal Zone and Inland Water ESA Contract 4000129872/20/I-DT

> Project reference: HYDROCOASTAL_ESA_POCCD Issue: 1.1

> > 08 October 2020

This page has been intentionally left blank

Change Record

Date	Issue	Section	Page	Comment
25/06/20	1.0	all	all	1st version
08/10/20	1.1	various	various	Minor updates following ESA review, ATBD reference.

Control Document

Process	Name	Date
Written by:	Albert Garcia-Mondejar, Ferran Gibert, Ester Vendrell	08/10/20
Checked by	David Cotton	08/10/20
Approved by:		

Subject	Radar Altimetry for Coastal Zone and Inland Water Level		Project	HYDROCOASTAL
Author		Organisation	Internal reference	es
Albert Garcia-Mor Ester Vendrell	ndejar, Ferran Gibert,	isardSAT	HYDROCOASTAL_ES	SA_POCCD
Michele Scagliola		Aresys		
Ole Andersen, Karina Nielsen, Heidi Ranndal		DTU Space		
Pierre Fabry		Along Track		
Luciana Fenoglio	-Marc	U Bonn		
Marcello Passaro		тим		
Christine Gomme	nginger	NOC		
Nicolas Bercher		AltHydroLab		
Angelica Tarpanelli		CNR-IRPI		
Elena Zakharova		NUIM		

	Signature	Date
For HYDROCOASTAL team		
For ESA		

Table of Contents

Introduction	8
The HYDROCOASTAL Project	8
Scope of this Report	8
Applicable Documents	8
Reference Documents	8
Document Organisation	9
Overview of Relevant Processing Stages and Different Approaches	10
TO L1B, L1B(S) (isardSAT)	10
Algorithm Overview	10
Additional Optional Processing Stages	10
Processing Options Definition	10
Stack Processing and Re-Tracking Algorithms to L2	13
2-step Analytical retracker (isardSAT)	13
Algorithm Overview	13
Additional Optional Processing Stages	13
Processing Options Definition	13
Specialised SARin (Aresys)	17
Algorithm Overview	17
Additional Optional Processing Stages	18
Processing Options Definition	18
MWaPP (DTU Space)	19
Algorithm Overview	19
Additional Optional Processing Stages	19
Processing Options Definition	19
ICC-ER Empirical Retracker (ATK)	19
Algorithm Overview	19
Additional Optional Processing Stages	20
Processing Options Definition	21
STARS Type (U Bonn)	22
Algorithm Overview	22
Additional Optional Processing Stages	22
Processing Options Definition	22

ALES+ for SAR (TUM)	22
Algorithm Overview	22
Additional Optional Processing Stages	23
Processing Options Definition	23
Specialised COastal OPerator for SAR - SCOOP-SAR (NOC)	23
Algorithm Overview	23
Additional Optional Processing Stages	23
Processing Options Definition	23
L2 to L3 (River Level Time Series)	24
L3 River/Lake Level (DTU)	24
Algorithm Overview	24
Additional Optional Processing Stages	24
Processing Options Definition	24
L3 River Level (AHL)	24
Algorithm Overview	24
Additional Optional Processing Stages	25
Processing Options Definition	25
L3 to L4 (River Discharge)	25
Rating Curves method (NUIM)	26
Algorithm Overview	26
Additional Optional Processing Stages	26
Processing Options Definition	26
Bjerklie equation method (NUIM)	27
Algorithm Overview	27
Additional Optional Processing Stages	27
Processing Options Definition	27
Manning approach method (NUIM)	27
Algorithm Overview	27
Additional Optional Processing Stages	28
Processing Options Definition	28
Merging method (CNR-IRPI)	29
Algorithm Overview	29
Additional Optional Processing Stages	30
Processing Options Definition	30
Tables of Instrument Parameters	31
Crvosat-2 Parameter Table	31

Sentinel-3 Parameter Table	32
List of Acronyms	33

1 Introduction

1.1 The HYDROCOASTAL Project

The HYDROCOASTAL project is a project funded under the ESA EO Science for Society Programme, and aims to maximise the exploitation of SAR and SARin altimeter measurements in the coastal zone and inland waters, by evaluating and implementing new approaches to process SAR and SARin data from CryoSat-2, and SAR altimeter data from Sentinel-3A and Sentinel-3B.

One of the key objectives is to link together and better understand the interactions processes between river discharge and coastal sea level. Key outputs are global coastal zone and river discharge data sets, and assessments of these products in terms of their scientific impact.

1.2 Scope of this Report

This is the Processing Options Configuration Control Document (POCCD) for HYDROCOASTAL.

To enable a meaningful comparison of results and assessment of the various algorithms, it is essential that all the partners in HYDROCOASTAL use the same full set of instrumental parameters and that the various options available for the processing are clearly defined, selected and documented. The objective of this document is to achieve that aim by listing the various processing options for a task.

The POCCD is a working document to be updated during the project.

1.3 Applicable Documents

AD-01 Sentinel-3 and CryoSat SAR/SARin Radar Altimetry for COASTAL ZONE and INLAND WATER - Statement of Work, V1.0 10/01/2019 Ref: EOP-SD-SOW-2018-089

1.4 Reference Documents

- RD-01 HYDROCOASTAL Technical Proposal. V1.1 28/11/2019, SatOC and HYDROCOASTAL team.
- RD-02 HYDROCOASTAL Implementation Proposal. V1.1 28/11/2019, SatOC and HYDROCOASTAL team.
- RD-03 HYDROCOASTAL Management Proposal. V1.3 26/11/2019, SatOC and HYDROCOASTAL team
- RD-04 HYDROCOASTAL Financial Proposal. V1.2 28/11/2019, SatOC and HYDROCOASTAL team
- RD-05 HYDROCOASTAL Contractual Proposal. V 1.2 26/11/2019, SatOC and HYDROCOASTAL team
- RD-06 HYDROCOASTAL Deliverable 1.3 ATBD (Algorithm Theoretical Basis Document). V1.1 08/10/2020, isardSAT and HYDROCOASTAL team.

RD-07 HYDROCOASTAL Deliverable 2.3 PSD (Product Specification Document). V1.1 08/10/2020, isardSAT and HYDROCOASTAL team.

1.5 Document Organisation

After this introductory section, section 2 provides an overview of the relevant processing stages and different approaches considered, following a similar order as in the ATBD [RD-06]. For each algorithm, eventual procedure options and parameters are introduced and described.

2 Overview of Relevant Processing Stages and Different Approaches

2.1 TO L1B, L1B(S) (isardSAT)

2.1.1 Algorithm Overview

The main processing stages of the Doppler-Delay processor (DDP) are:

- 1. Surface locations, Final burst datation and Window delay
- 2. Beam angles computation
- 3. Azimuth processing (Delay-Doppler processing + Stacking)
- 4. Geometry corrections
- 5. Range compression
- 6. Multi-looking
- 7. Scaling factor computation (sigma0 extraction)

L1B(S) waveform stacks are generated at stage (5), while L1B multi-looked waveforms are generated at stage (6). For details on the description and mathematical formulation of each of the processing stages please refer to the HYDROCOASTAL deliverable D1.3 ATBD, Section 3 [RD-06].

2.1.2 Additional Optional Processing Stages

The processing stages, which might potentially improve the performance and that can be optionally activated/deactivated using the processing configuration file, can be summarized as:

- <u>Burst azimuth weighting</u>: to reduce the side-lobes of the Doppler or beam PTR, minimizing the effect of possible land contamination being acquired by the side-lobes,
- <u>Azimuth processing method</u>: exact or approximate. It can be useful for areas with high topographic variability (close to coastal regions),
- <u>Multi-looking with zeroes method</u>: allows to consider or not the inclusion of zero-valued samples in the averaging,
- <u>Zero-padding in across-track</u> (range oversampling factor): allows the generation of a finer range bin step, which might be useful to properly sample the leading edge for very specular echoes.

For details on the description and mathematical formulation of each of these new processing algorithms please refer to the HYDROCOASTAL deliverable D1.3 ATBD, Section 3 [RD-06].

2.1.3 **Processing Options Definition**

The processing options and configuration parameters will be contained in a JSON file. Each parameter of this JSON file will have four fields:

- Name
- Value
- Units

Description •

Field Name	Description	Value / Range	Units	
	Waveforms correction (calibration)			
CAL2 application (CAL2_flag_cnf)	Carry out the application of the low-pass filter modulation or CAL2	0: deactivated 1: activated	flag	
Application of CAL1 intra-burst (CAL1p2p_flag_cnf)	Application of the amplitude and phase intra-burst corrections	0: deactivated 1: activated	flag	
	Azimuth-related processing			
Burst azimuth windowing (azimuth_window_cnf)	Flag to indicate the window at burst level before performing the azimuth FFT	0: None 1: Hamming [DEFAULT] 2: Hanning	flag	
Azimuth processing method (force_exact_method_cnf)	Value that forces the precision of the Delay-Doppler process	0: Approximate method 1: Exact method	flag	
	Range-related processing	•		
L1B-S and L1B range oversampling factor (zp_fact_range_cnf)	Number of zero-padding applied to the waveforms during the range compression process	1,2, 4,, 1024,	[]	
Range window (range_window_cnf)	Flag to indicate the window in the range time domain level before performing the range FFT	0: None 1: Hamming [DEFAULT] 2: Hanning	flag	
	Geometry correction			
Window delay alignment (win_delay_ref_cnf)	Indicates which method to be used in the window delay alignment (reference window delay to perform geometry corrections)	0: Normal alignment ¹ 1: Beam with maximum power 2: Closest to a given window delay defined by a reference height "elevation_ref_cnf" 3: First window delay in stack 4: Force to minimum window delay 5: Coastal operation ²	flag	
Reference height (elevation_ref_cnf)	Indicates the reference height used for the window delay used in the geometry corrections (option 2 of flag "win_delay_ref_cnf")	Height in meters	m	
Stack & multilooking related processing				

¹ Window delay associated to the surface, linked to the window delay of the burst right above the surface
² Align w.r.t window delay of the first beam/burst in stack tagged as land assuming the land/sea mask information provided in the FBR.

Multi-looking method (use_zeros_cnf)	Average through all the samples or just consider the non-0 samples	0: Only non-0 samples 1: All samples considered	flag
Zero beams removal (avoid_beams_mask_allzeros_cn f)	Flag to remove from the multilooking the beams whose all range bins are all set to zero	0: deactivated 1: activated	flag
Cryosat-like beams removal (mask_look_angles_CR2_cnf)	Flag to remove the outer beams in the stack based on a min and max look angle threshold ("mask_look_angles_CR2_max_chd" and "mask_look_angles_CR2_min_chd")	0: deactivated 1: activated	flag
Min look angle for beams removal (mask_look_angles_CR2_min_ch d)	Minimum look angle below which the beams in a stack will not be considered (when beams removal a la CryoSat-2 is considered)	-0.6*180/ <i>π</i>	rad
Max look angle for beams removal (mask_look_angles_CR2_max_c hd)	Maximum look angle above which the beams in a stack will not be considered (when beams removal a la CryoSat-2 is considered)	+0.6*180/ <i>π</i>	rad
Sentinel-3 like beams removal (avoid_noisy_beams_cnf)	Flag to remove the noisy beams in the stack following the Sentinel-3 baseline ³	0: deactivated 1: activated	flag
Threshold factor noise (param_std_noise_thres_cnf)	Factor indicating the number of times the standard deviation of the noise used in the Sentinel-3 like beams removal	3	[]
Noise estimation window (noise_estimation_window)	Vector of two dimensions indicating the first and last range bin (non-zero padded) to be used for noise estimation	[12 16]	[]
Noise estimation method	String indicating the method used to estimate the statistics of the noise over the stack (considered in Sentinel-3 like beams removal)	Default: 'after_geom_corr': estimation of average and standard deviation performed after geometric corrections'before_geom_corr ': estimation of average and standard deviation performed before geometric corrections	
Stack masking (apply_stack_mask_cnf)	Flag to apply a mask to the stack in order to delete undesired phenomena(including masking of the wrapped samples due to geometry corrections)	0: deactivated 1: activated	flag
	Masking & Product & verbosity		
Geographical mask (mask_flag)	Flat to consider the application of a geographical mask to the input FBR;	0: deactivated 1: activated	flag

³ The approach is as follows: if the noise of a beam (computed in a given set of range bins before the leading edge) is higher than the average of the noise (*P_n^stack*) plus a factor β of the standard deviation of the noise - σ_n^s tack (both estimated in the same range bins but all over the stack), that beam is discarded, e.g.: *P_n^stack* + $\beta \cdot \sigma_n^s$ tack.

	the mask shall be contained in a kml file		
Generate L1B product (writing_L1B)	Flag to generate the L1B product in netcdf format	0: deactivated 1: activated	flag
Prompt figures (figures_visible_cnf)	Flag that prompts up per screen the potential figures (if any) that might be generated by processor		flag

2.2 Stack Processing and Re-Tracking Algorithms to L2

2.2.1 2-step Analytical retracker (isardSAT)

2.2.1.1 Algorithm Overview

The main steps included in this algorithm are:

- 1. Pre-processing (or waveform filtering),
- 2. Waveform modelling,
- 3. Fitting procedure,
- 4. Geophysical corrections.

The pre-processing stage can be understood as a two-step filtering process. The records are filtered using a water-land mask and then the window delay information is used to properly extract a cut of the waveform corresponding to the nadir water body return. The waveform modelling is in charge of generating the theoretical model of the multi-looked SAR waveform used within the fitting procedure in order to infer the different geophysical estimates (including the retracked range correction). The fitting procedure tries to converge to a solution that minimizes the error between both in a LSE basis by iteratively updating the stack model. Finally the corrections are applied.

2.2.1.2 Additional Optional Processing Stages

No additional optional processing stages that could be optionally activated/deactivated by the user have been implemented.

2.2.1.3 Processing Options Definition

Field Name	Description	Value	Units
mission	Mission name	CS2,S3A,S3B	

mode	SAR mode	SAR, SARin	
L1proc	L1B processor being used.	ESA, ISD	
use_zeros_cnf	Flag indicating whether to use or not the zeros in the multi-looking processing	true / false	
ZP	Zero-padding value	1	
window_type_a	Along-track or azimuth window type (flag values: Hamming, Hanning, or Boxcar)	Hamming, Hanning or Boxcar DEFAULT: Hamming	
window_type_r	Across-track or range window type	Hamming, Hanning or Boxcar DEFAULT: Hamming	
retracker_name	A string vector indicating the different retrackers to be used. One or more than one at a time can be active. For example ["THRESHOLD", "ANALYTICAL", "OCOG"] will activate all of them and ["THRESHOLD", "OCOG"] only the Threshold and the OCOG retrackers.	["THRESHOLD", "ANALYTICAL","OCOG"]	
analytical_type_of_fitting	Type of fitting when using analytical retracker: options: SWH, MSS or 2-step	SWH, MSS, 2step	
ref_sample_wd	Reference sample (zero-padded) for the window delay.	64	samples
mask_ROI_flag	Flag that activates filtering out those surfaces outside the kml mask. The mask should be created in "google earth" software as a single polygon and saved as a kml file.	true / false	
mask_looks_flag	Flag that activates filtering those surfaces without a minimum number of beams in the stack	true / false	
Neff_thres	Number of minimum number of beams per stack that a surface shall have in order not to be discarded from fitting (meant to be useful for the beginning and end of track)	true / false	
wvfm_portion_selec	Flag to activate the portion selection of the waveform where to consider the fitting	true / false	
wvfm_portion_selec_type	Type of waveform portion selection to	ref_height, ref_height,	

	be considered: 'ref_height': using a reference height from DEM (related to some peak + window around it); 'peak_win' using the maximum peak of waveform with a window around it (wvfm_portion_selec_I_samples, wvfm_portion_selec_r_samples); 'peak_valley' using the maximum peak selecting the samples around it based on two closest valleys surrounding the peak plus a margin defined by the wvfm_portion_selec_I_samples and wvfm_portion_selec_r_samples	peak_valley,	
wvfm_portion_selec_l_sample s	left samples w.r.t to position of ref. position within window (either peak or valley)	10	
wvfm_portion_selec_r_sample s	Define the minimum prominence of the peaks to be sorted out in a multipeak scenario	0	
peak_prominence_norm	right samples w.r.t to position of ref. position within the window (either peak or valley). Currently used only with ref_height option	0.4	
th_retracker_percentage_peak	Percentage of the peak for threshold retracker	50	%
OCOG_retracker_percentage_ pow_OCOG	Percentage of OCOG power	87	%
OCOG_retracker_n1	First zero-padded sample to be used in leading edge estimation	35	
OCOG_retracker_n2	Last zero-padded sample to be used in leading edge estimation	128	
OCOG_retracker_offset	Offset from epoch estimation	0	
OCOG_retracker_param_comp _method	Flag indicating which type of method used to extract OCOG parameters: 0: square of power samples (Frappart) or 1: using the power samples (Wingham)	0, 1	
OCOG_retracker_implementati on_method	Flag indicating which OCOG approach followed: 0: Using threshold-based approach computed within n1 and n2; 1: Computing Amplitude reference within limits defined by the window centered at the COG; 2: Using epoch=offset+(COG-W/2)	0, 1, 2	
analytical_retracker_rou	Mean squared slopes (MSS) when	1e-04	

	-	-	
	fitting the SWH. For open ocean typical value is 1e-02, for inland waters 1e-04		
analytical_retracker_Hs	Value of the SWH when fitting the MSS	1e-03	m
analytical_retracker_power_wf m_model	Define the model approximation of power wfm whether to compute: 'simple': PkI=BkI*sqrt(gI)*func_f0; 'complete': PkI=BkI*sqrt(gI)*(func_f0+TkI*gI*simga_ s^2*func_f1)	simple or complete	
analytical_retracker_lut_flag	Flag to activate the usage of look up tables (LUTs)	true / false	
analytical_retracker_pre_proce ssing	flag to activate the pre-processing stage to generate an initial seed estimation of epoch based on a threshold retracker	true / false	
analytical_retracker_pre_proce ssing_percent_leading_edge	Percentage of peak detect to establish the mid-point leading edge	87	%
analytical_retracker_ini_Epoch	Initial seed for epoch (zero-padded sample). Recommended to use a value from the left	35	sample
analytical_retracker_ini_Hs	Initial seed for the SWH fitting	2	m
analytical_retracker_ini_Pu	Initial seed for the amplitude fitting Pu	1	
analytical_retracker_ini_MSS	Initial seed for MSS fitting	87	
analytical_retracker_two_step_ fitting_COR_threshold_rou	Threshold below which the second fitting on MSS is used (in the 2-step fitting)	95	
analytical_retracker_pre_proce ssing_percent_leading_edge	Percentage of peak detect to establish the mid-point leading edge. Number between 50 and 90. The higher the closer to the peak. 87 usually used in for Ocean	87	
geo_corr_application_flag	Flag to activate the application of the geophysical corrections	true / false	
force_geocorr_surf_type	Flag true: use the same group of geophysical corrections to all the records independently of the flag of the surface type (forcing the type of surface indicated in product_type_surface); false: use the geophysical corrections depending on the flag surface type included in the L1B	true / false	

product_type_surface	Type of surface to use the geophysical corrections forced to all surfaces within track	open_ocean, sea_ice, land_ice	
Product_type	String to indicate whether land (LAN) or water product (WAT), to be consistent with Sentinel-3 products	LAN or WAT as in the S3 products	
write_output	Flag to write the output product (true: write product; false: omit saving L2 product)	true / false	
output_product_format	Flag to indicate the type of output product to be generated (nc: netcdf or mat: matlab file)	nc: netcdf or mat: matlab file	
nc_name_surface_height	string indicating the name of nc variable of output product for surface height: ssh (sea surface height) or sh (surface height)	ssh (sea surface height) or sh (surface height)	
plot_fits_flag	Flag to generate fitting plots of waveforms	true / false	
plot_fits_lat_range	Range of min and max latitudes of surfaces, whose fitting is plotted	[-91,91]	Degrees North
plot_fits_downsampling	Downsampling of the surfaces to be plotted: every each number of surfaces the plot is generated and saved	50 (recommended)	
visible_figures	Flag to indicate whether the generated plots shall be prompted or displayed	true / false	

2.2.2 Specialised SARin (Aresys)

2.2.2.1 Algorithm Overview

The main steps included in this algorithm are:

- 1. Pre-processing: the waveforms plus the needed ancillary information are extracted from the L1b file and the subset of waveforms to be processed is selected (i.e. only waveforms flagged as valid and as ocean are selected).
- 2. Waveform modelling: the semi-analytical model is called to compute the theoretical multi-looked SARin cross-product and phase difference waveforms, as function of the ancillary information associated to the current L1b waveform.
- 3. Fitting procedure: by iteratively updating the output of the waveform modelling, a least-square minimization approach is used to obtain an estimate of the geophysical

parameters as the set of values that allow to reduce the distance between the L1b waveforms and the output of the waveform modelling.

2.2.2.2 Additional Optional Processing Stages

No additional optional processing stages that could be optionally activated/deactivated by the user have been implemented.

2.2.2.3 Processing Options Definition

Field Name	Description	Value	Units
retracking_mode	 Define the retracking mode retrack power waveform retrack cross product waveform retrack cross product and phase difference in sequence retrack jointly cross product and phase difference with weights 	power (P), cross product (XP), cross product and phase difference (XPPD) or cross product and phase difference weighted (XPPDweighted)	None
objective_function	 Define the objective function used for minimization: 1) Weighted approach 2) phase difference with SWH_0 from cross product fit 	of_weighted, of_fix_swh	None
phase_difference_mode	select processing approach for phase difference waveform (scale between 0-1, unwrap or unwrap-smooth-rewrap	scale, unwrap, unwrap-smooth-rewrap	None
phase_difference_weight	weight assigned to the phase difference waveform in the objective function	[0,1]	Unitle ss
cross_product_weight	weight assigned to the cross product waveform in the objective function	[0,1]	Unitle ss
min_coherence	Threshold value for the coherence used to define fitting mask	[0,1]	Unitle ss
apply_slope_correction	Add across-track surface slope to antenna bench roll angle	false/true	None

retrack_from_bin_delta	bins before retracking gate defining the begin of the fitting mask	[0,1024]	Unitle ss
retrack_until_bin_delta	bins after retracking gate defining the end of the fitting mask	[0,1024]	Unitle ss

2.2.3 MWaPP (DTU Space)

2.2.3.1 Algorithm Overview

The main stages included in this algorithm are:

- 1. Finding the waveforms that occur over an inland water body. This is done using the Global Surface Water Explorer land/water mask.
- 2. Then all waveform bins in the chosen waveforms are referenced to the same heights using interpolation and a mean of all the waveforms is found.
- 3. For the mean waveform, the first peak higher than 20% of the maximum power is identified.
- 4. For every original waveform, the peak closest to the one identified in step 3. is found.
- 5. The subwaveform around the peak found in step 4 is retracted using an ocog-retracker with a threshold of 80%.

2.2.3.2 Additional Optional Processing Stages

Currently, none.

2.2.3.3 Processing Options Definition

Currently, none.

2.2.4 ICC-ER Empirical Retracker (ATK)

2.2.4.1 Algorithm Overview

The main steps included in the algorithm of the "Isolate, Cleanse, Classify - Empirical Retracker" are:

- 1. For each Doppler beam of the Stack (current record):
 - a. **Isolate** the M major peaks, in a valley-to-valley definition of the peaks that account for local noise. This is reached in three major steps:
 - all 'raw' peaks and valleys are detected: each peak is naturally delimited by a fore and an aft valley,

- all peaks are sorted in descending order with two options for the sorting method: sorting_method: {'peakvalue', 'v2p+p2v'} which is either the peak value or the sum of the two amplitudes around the peak (from fore valley to peak and from peak to aft valley),
- the vicinity of each of the M highest peaks (1 < m ≤ M) is iteratively browsed, ratingfirst in the fore direction and then in the aft direction, in order to expand the peak's limits (the fore and aft valleys) by progressively integrating the small peaks ('noise') that are beyond these limits. The process ends in one direction as soon as a large enough peak is found in that direction. At each iteration the "browsed peak" with index m_B shall pass a "noise" test that involves a Noise-to-Peak ratio K_{NP} that is applied to the highest peak (m=1) to define an absolute acceptable noise threshold.
- b. Cleanse the Stack by removing the peaks that are poping up at some beams and are absent at most others. Rather than producing a unique "clean" waveform this step produces up to M "clean" pseudo-waveforms (PWF) in SARINM and up to one PWF in SARM. Let's describe the SARINM case which is the most generic one. In order to build the pseudo-waveforms associated to the m-th peak, we build a new Stack by simply masking the initial Stack and keeping the samples that are within the valley-to-valley limits of this peak at all beams; the rest of the Stack is set to NaN. At any range gate, whenever a peak is not "seen" in more than a given ratio of Contributing Beams, K_{CB} , then it is ignored and the whole range gate line is set to NaN. At the end of the process the most powerful contiguous block of range gates is the selected extent for the m-th peak (cumsum test). All other range gates of the Stack are set to NaN. If the peak extent does not reach a minimum size of I_{PEmin} range gates then the peak is discarded, otherwise the PWF corresponding to the m-th peak is obtained through multi-looking. We denote M_{PWF} the number of output PWF e.g. the number of peaks among M that have passed this step. In SARM we select the first PWF e.g. the one that has its non NaN values starting at the lowest range gate index.
- 2. Process all PWF of all records as follows:
 - a. **Classify** the pseudo-waveform. There are two different versions of the classifier:
 - SARM classifier: a simple Pulse Peakiness (PP) test is performed on the PWF with two possible classes: {Water, Non Water} and a single PP threshold KPP,
 - SARINM classifier: WIP.
 - b. Retrack the selected peak(s). The retracked point is located at K_R ∈]0,1[of the highest peak's value on the leading edge side of the PWF (same threshold as the one used with ICE1 for SARM CS2 WF). The value of K_R depends on the *mission_id* ∈ {'cryosat2', 'sentinel3a', 'sentinel3b'} and the *altimeter_mode* ∈ {'LRM', 'SARM', 'SARINM'}. A linear interpolation is used to provide the epoch value as a floating point number of bins.

2.2.4.2 Additional Optional Processing Stages

There are no additional optional processing stages.

2.2.4.3 Processing Options Definition

Field Name	Description	Value	Units
	Isolate (Stage 1a)		
max_num_peaks	The maximum number of major peaks (M) to be isolated and expanded (may be > 1, even in SARM as it controls some intermediate steps of the algorithm).	[1, floor(I/2)] where I is the num. of range gates in the input Stack or WF.	us
sorting_method	peak sorting method (see the algorithm description)	{'peakvalue', 'v2p+p2v'}	str
max_noise_to_peak_ratio	K _{NP}]0,1[fl
	Cleanse (Stage 1b)		_
altimeter_mode	self describing	any value in {'LRM', 'SARM', 'SARINM'}	str
min_contrib_beams_ratio	K _{CB}]0,1[fl
min_peak_extent_rg	I _{PEmin}	[3,I] where I is the num. of range gates in the input Stack or WF.	uc
	Classify (Stage 2a)		<u>.</u>
thresh_pp	K _{PP}]0,1]	fl
	Retrack (Stage 2b)		
mission_id	self describing	any value in {'cryosat2', 'sentinel3a', 'sentinel3b'}	str
altimeter_mode	self describing	any value in {'LRM', 'SARM', 'SARINM'}	str
thresh_rtk	depends on both the mission_id and the altimeter_mode. The values are stored in a python dict of dict: thresh_rtk[mission_id][altimeter_mo de]]0,1[fl

2.2.5 STARS Type (U Bonn)

2.2.5.1 Algorithm Overview

The Spatio-Temporal Altimeter Retracker for SAR altimetry (STARS) is an enhancement of the STAR retracker originally developed for low resolution mode and uses the functional waveform model Signal model Involving Numerical Convolution for SAR (SINCS) to retrack the Delay Doppler.

The main processing stages of STARS are:

- 1. partitioning the waveform into individual sub-waveforms
 - a. generating dictionary elements
 - b. constructing the conditional random field (CRF)
 - c. selecting sub-waveforms based on the CRF-solution
- 2. retracking all individual sub-waveforms using SINCS
- 3. selecting final estimates for each 20 Hz position
 - a. pre-processing of the point-cloud
 - b. applying Density-Based Clustering of Applications with Noise (DBSCAN) and Random Sample Consensus) for line detection within point-cloud (RANSAC)
 - c. selecting final estimates

For details on the description and mathematical formulation of each of the processing stages, please refer to the HYDROCOASTAL deliverable D1.3 ATBD, Section 8 [RD-06].

2.2.5.2 Additional Optional Processing Stages

There are no additional optional processing stages.

2.2.5.3 Processing Options Definition

There are no processing options.

2.2.6 ALES+ for SAR (TUM)

2.2.6.1 Algorithm Overview

ALES+ SAR is based on an empirical application of the Brown-Hayne functional form that models the radar returns from the ocean to the satellite. It needs as input the multi-looked waveform produced at any L1B of choice.

The main processing stages of the ALES+ SAR retracker are:

1. Leading Edge Detection

Public Document

- 2. Choice of Trailing Edge Slope
- 3. Subwaveform Retracking
- 4. Sea State Bias Correction

For details on the description and mathematical formulation of each of the processing stages, please refer to the HYDROCOASTAL deliverable D1.3 ATBD, Section 9 [RD-06].

2.2.6.2 Additional Optional Processing Stages

None

2.2.6.3 Processing Options Definition

None

2.2.7 Specialised COastal OPerator for SAR - SCOOP-SAR (NOC)

2.2.7.1 Algorithm Overview

SCOOP-SAR is a prototype coastal SAR waveform retracker developed by NOC in the ESA SCOOP project to retrieve more and better SAR altimeter data very close to land for the Cryosat-2 mission.

SCOOP-SAR operates on L1B(S) stack data, with input from L2 output, and uses an adaptive data-based approach for stack and waveform subsetting.

The algorithm has so far been tested only on a small number of Cryosat-2 L1B(S) products.

For details on the description and mathematical formulation of each of the processing stages please refer to the HYDROCOASTAL deliverable D1.3 ATBD, Section 10 [RD-06].

2.2.7.2 Additional Optional Processing Stages

None

2.2.7.3 Processing Options Definition

None

2.3 L2 to L3 (River Level Time Series)

There are two L3 methods described in this chapter:

- L3 river/lake level method, developed by DTU,
- L3 river level method, developed by AHL.

2.3.1 L3 River/Lake Level (DTU)

2.3.1.1 Algorithm Overview

The DTU level 3 water level time series product is contracted via a state-space time series model. The process part is a simple random walk. The error distribution in the observation part is a mixture between a Cauchy and a Normal distribution limiting the effect of erroneous measurements. The main steps in the processing is outlined below.

- Data extraction using a water mask
- Crude outlier identification
- Preparation of data input format
- Estimation of Water level time series
- Constructing output file

For details the algorithm is specified in HYDROCOASTAL deliverable D1.3 ATBD, Section 6 [RD-06] and the data output format is specified in HYDROCOSTAL deliverable D2.3 PSD, Section 4 [RD-07].

2.3.1.2 Additional Optional Processing Stages

Currently, none

2.3.1.3 Processing Options Definition

Currently, none

2.3.2 L3 River Level (AHL)

2.3.2.1 Algorithm Overview

The AHL L3 Processor allows the generation of L3 data of river water level, from L2 retracked data, in the form of:

- **time series** of river water levels **for repeat orbit satellites**, overflying regularly the same locations over inland waters and eligible to the concept of Virtual Stations (VS).
- **space-time series** of river water levels **for non-repeat orbit satellites**, not overflying regularly the same locations over inland waters, but regularly the same waterbody/region in different locations, not eligible to the concept of Virtual Stations (VS).

For each retracker, the L3 data contain one and only one Water Level (WL) measurement per overflight of the satellite over the waterbody (cf. OPO Reduction). The algorithm has been designed to scale fluently from the processing of the TDS up to the GVP (i.e., global scale).

2.3.2.2 Additional Optional Processing Stages

Currently, none.

2.3.2.3 Processing Options Definition

The processing options and configuration parameters will be contained in a JSON file. Each parameter of this JSON file will have four fields:

- Name
- Value
- Units
- Description

The following table contains the processing options of the L3 River Processor:

Field Name	Description	Value	Units
L2WM to L3 stage			
flag_water_mask_dataset	Defines the water mask dataset in use.	1: SWBD 2: GSW	none
flag_process_as_repeat_orbit	When set to true, process data as repeat orbit data. Process data as non-repeat orbit data otherwise.	True or False	none

2.4 L3 to L4 (River Discharge)

There are four L4 methods described in this chapter:

- 1. Rating Curves method, developed by NUIM.
- 2. <u>Bjerklie equation method</u>, developed by NUIM.
- 3. <u>Manning approach method</u>, developed by NUIM.
- 4. Merging method, developed by CNR.

2.4.1 Rating Curves method (NUIM)

2.4.1.1 Algorithm Overview

The algorithm is based on the establishing of the empirical relation between L3 water level (H) and in situ river discharge (Q) simultaneously measured at nearest gauging station. The processing steps include:

- 1. L3 water level time series separation by hydrological phases (flood rise, flood recession, low level period, ice presence etc) to account for potential hysteresis between the rising and falling flood limbs and the ice effect (if relevant).
- 2. Fitting H-Q equations (unique or specific for each hydrological phase) by least-square minimization approach.

2.4.1.2 Additional Optional Processing Stages

1. Use of unique or phase specific rating curves

2.4.1.3 Processing Options Definition

Field Name	Description	Value	Units
flagNbRC	Number of the rating curves to apply	[1,2,3]	none
q_insitu	Vector of in situ discharge	[0-400000]	m³/s
time_insitu	Matrix of the time corresponding to q_insitu: [YYY, MM, DD]	[0-2030]	none

2.4.2 Bjerklie equation method (NUIM)

2.4.2.1 Algorithm Overview

The algorithm is based on the use of the empirical formula relating the river discharge (Q) to the river depth (D) corrected on L3 water level (H), the L4 water slope and the river width (B). The processing steps include:

- 1. Updating the look up table with the river depth (D0) at minimal H taken from auxiliary databases.
- 2. River depth correction for water level changes
- 3. Fitting the B-H equation by least-square minimization approach.
- 4. River width estimation using B-H equation.

2.4.2.2 Additional Optional Processing Stages

1. Calibration of the D0 using simultaneous in situ discharge

2.4.2.3 Processing Options Definition

The following table contains the processing options of the chain:

Field Name	Description	Value	Units
flag D0	Activation of calibration of the D0 if Q _{insitu} is available	[0, 1]	none
q_insitu	Vector of in situ discharge	[0-400000]	m³/s
time_insitu	Matrix of the time corresponding to q_insitu: [YYY, MM, DD]	[0-2030]	none

2.4.3 Manning approach method (NUIM)

2.4.3.1 Algorithm Overview

The algorithm is based on the use of the Manning equation for estimation of the mean water velocity (V). This algorithm uses the water slope variable derived from the L3 altimetric water level

spatio-temporal model. The discharge is calculated as the product of the velocity and river cross-section area (A). The main algorithm is applied to the bankfull flow.

- 1. Ice period flagging if relevant [flagIce==1 is ice presence]
- 2. Updating the look up table with the river depth (D0) at minimal H taken from auxiliary databases.
- 3. River depth (D) correction for water level changes
- 4. Fitting the B-H equation by least-square minimization approach.
- 5. River width estimation using B-H equation.
- 6. Flow contributing cross-section water area estimation
- 7. Calibration of the friction coefficient (n)

2.4.3.2 Additional Optional Processing Stages

- 1. Floodplain segregation and parameterization routine
- 2. Additional channels flow routine

2.4.3.3 Processing Options Definition

Field Name	Description	Value	Units
flagD0	Activation of simultaneous calibration of the n and D0	[0, 1]	none
q_insitu	Vector of in situ discharge	[0-400000]	m³/s
time_insitu	Matrix of the time corresponding to q_insitu: [YYY, MM, DD]	[0-2030]	none
flagFloodplain	Activation of the FloodPlain routine	[0, 1]	none
floodPlainWidth	Dynamic vector of the floodplain width corresponding to L3 water level	[0-30000]	m
floodPlainH0	Altimetric water level for the start of the floodplain inundation	[-10 - 1000]*	m

floodPlainFriction	The constant of the Manning friction coefficient for the floodplain, depending on vegetation type (from USGS lookup tables)	[0.03-0.13]	none
flagOtherChannels	Activation of the 2nd and 3d channel routine	[0, 1, 2]	none
otherChannelsWidth	Dynamic vector of the secondary channel width corresponding to L3 water level	[0-1000]	m
otherChannelsD0	Channel depth at minimal water level	[0-20]	m
otherChannelsFriction	Constant of the Manning friction coefficient (can be the same as for bankfull discharge)	[0.018-0.040]	none

* this range is not adapted for high altitude sites

2.4.4 Merging method (CNR-IRPI)

2.4.4.1 Algorithm Overview

The algorithm is based on the use of both altimetry derived water level, H, and reflectance ratio C/M extracted for the selected gauging station. The processing steps include:

- 1. Extraction of a box centered in the virtual station (or gauged station) for each cloud free imagery in the near infrared band of multispectral images.
- 2. Calibration of the location of pixel C, in a dry area and M, close to the river, and calculation of C/M reflectance ratio.
- 3. Calibration of the three parameters of the merging method that uses the reflectance ratio C/M and the altimetry water level time series.
- 4. Estimation of river discharge through the application of the merging method.

2.4.4.2 Additional Optional Processing Stages

- 1. The reflectance ratio product can be extracted by considering the original resolution of the images or the resampling at 3x3 pixels.
- 2. The multispectral images used to extract the reflectance ratio can be derived by different sensors: MODIS or OLCI or Landsat.

2.4.4.3 Processing Options Definition

Field Name	Description	Value	Units
flagSensor	Multispectral sensor used to derive reflectance ratio	MODIS, OLCI, Landsat-8	none
flagPx	Resampling of the multispectral images: single (1x1) or multiple (3x3) pixel	[1,3]	none
q_insitu	Vector of in situ discharge	[0-400000]	m³/s
time_insitu	Matrix of the time corresponding to q_insitu: [YYY, MM, DD]	[0-2030]	none

3 Tables of Instrument Parameters

3.1 Cryosat-2 Parameter Table

INSTRUMENT PARAMETERS		
Ku band frequency	13.575 GHz	
Rx bandwidth	320 MHz	
Rx pulse width	44.8 µs	
Chirp slope sign	negative	
SAR pulse repetition frequency	18181.818 Hz	
Frequency sweep rate (chirp scaling factor)	350 MHz/49µs or 320Mz/44.8µs	
Number of samples per pulse	128	
Number of pulses in a BURST	64	
Burst length	64/PRF _{SAR}	
Burst repetition interval	0.011693825 s	
PTR 3dB width	2.801e-9 s	
ANTENNA PARAMETERS		
Antenna 3dB aperture used to compute the doppler model	2D elliptic sinc function: teta3dB_X = 1.095 deg teta3dB_Y = 1.22 deg	
Antenna gain at boresight	42.6 dB	

3.2 Sentinel-3 Parameter Table

INSTRUMENT PARAMETERS		
Ku band frequency	13.575 GHz	
Rx bandwidth	320 MHz	
Rx pulse width	44.8 µs	
Chirp slope sign	negative	
SAR pulse repetition frequency	17825.311 kHz	
Frequency sweep rate (chirp scaling factor)	320MHz / 44.8µs	
Number of samples per pulse	128	
Number of pulses in a BURST	65 (64 Ku + 1C)	
Burst length	0.814967936 s (considering the 64 Ku pulses)	
Burst repetition interval	0.012733874 s	
PTR 3dB width	2.819e-09 s	
ANTENNA PARAMETERS		
Antenna 3dB aperture used to compute the doppler model	2D circular sinc function: teta3dB_X = 1.35 deg teta3dB_Y = 1.35 deg	
Antenna gain at boresight	41.9 dB	

4 List of Acronyms

ACE2	E2 Altimeter Corrected Elevations (vers. 2)		Data Access Object
AD	Applicable Documents	DARD	Data Access Requirement Document
AGC	Automatic Gain Control	DBSCA	N Density-Based Clustering of Applications
AH	Alti-Hydro		with Noise
AHP	Alti-Hydro Product(s)	DDM	Delay-Doppler Map
AI	Action Item	DDP	Delay-Doppler Processor
AIM	Action Item Management (tool)	DEM	Digital Elevation Model
AltiKa	Altimeter in Ka band and bi-frequency radiometer	DGC	Doppler Ground Cell
	instrument	DPM	Detailed Processing Model
AMSR-I	EAdvanced Microwave Scanning Radiometer-Earth	DPP	Data Procurement Plan
	Observing System	DTC	Dry Tropospheric Correction
ANA	Agência Nacional de Águas (National Water Agency, Brazil)	DTU	Danmarks Tekniske Universitet (Technical University of Denmark)
AoA	Angle of arrival	DVT	Data Validation Table
API	Application Programming Interface	ECMW	FEuropean Centre for Medium-Range Weather
AR	Acceptance Review		Forecasts
ASAP	As Soon As Possible	ECSS	European Cooperation for Space Standardisation
ASCII	American Standard Code for Information Interchange	EGM	Earth Gravitational Model
ATBD	Algorithm Technical Basis Document	ENVISA	AT ENVIronment SATellite
ATK	ALONG-TRACK S.A.S.	EO	Earth Observation
AVISO	Archivage, Validation et Interprétation des données	EOEP	Earth Observation Enveloppe Programme
	des Satellites Océanographiques	EOLi	Earth Observation Link
BIPR	Background Intellectual Property Right	EOLi-S	AEOLi-Stand Alone
CASH	Contribution de l'Altimetrie Spatiale à l'Hydrologie	EPN	EUREF Permanent Network
	(Contribution of Space Altimetry to Hydrology)	ERA	ECMWF ReAnalysis
CCN	Contract Change Notice	ESA	European Space Agency
CFI	Customer Furnished Item	EUREF	IAG Reference Frame Sub-Commission for Europe
CLASS	NOAA/Comprehensive Large Array-Data	FBR	Full Bit Rate
	Stewardship System	FFT	Fast Fourier Transform
CoG	Centre of Gravity	FR	Final Review
СРР	CryoSat-2 Processing Prototype (CNES)	FTP	File Transfer Protocol
CRF	Conditional Random Field	FCUP	(from portuguese) "Faculdade de Ciências da
CryoSa	t-2 Altimetry satellite for the measurement of the polar ice caps and the ice thickness		Universidade", Science faculty of the University of Porto
CRISTA	AL Copernicus polaR Ice and Snow	GDAL	Geospatial Data Abstraction Library
	Topography ALtimeter	GDR, [I	-,S-] Geophysical Data Record, [Interim-,
CRUCI	AL CRyosat-2 sUCcess over Inland wAter and		Scientific-]
	Land	GFZ	Deutsche GeoForschungsZentrum (German
CSV	Comma Separated Values		Research Centre for Geosciences)
СТОН	Centre de Topographie des Océans et de	GNSS	Global Navigation Satellite System
	l'Hydrosphère (Centre of Topography of the Oceans and the Hydrosphere)	GOCE	Gravity field and steady-state Ocean Circulation Explorer

GPD	GNSS-derived Path Delay	LAGEO	S Laser Geodynamics Satellite
G-POD	Grid Processing on Demand	LEGOS	(french acr.) Laboratoire d'Études en Géophysique et
GPT2	Global Pressure and Temperature model (vers. 2)		Océanographie Spatiale (Laboratory for Studies in
GPP	Ground Processing Processor		Geophysics and Spatial Oceanography)
GPS	Global Positioning System	LOTUS	Preparing Land and Ocean Take Up from Sentinel-3
GRACE	Gravity Recovery And Climate Experiment	LPS	Living Planet Symposium
GRDC	Global Runoff Data Centre	LRM	Low Resolution Mode
GRGS	Groupe de Recherche de Géodésie Spatiale (Space	LSE	Least Square Estimator
	Geodesy Research Group)	LWL	Lake Water Level
GRLM	Global Reservoir and Lake Monitor	LWS	Low Water Stage
GTN-L	Global Terrestrial Network - Lakes	MARS	Meteorological Archival and Retrieval System
GVP	Globally Validated Products	MDL	Minimum Description Length
HDF-EO	S Hierarchical Data Format - Earth Observing	MMSE	Minimum Mean Square Error
	System	MNDWI	Modification of Normalised Difference Water Index
HGT	A SRTM file format	MoM	Minutes of Meeting
HWS	High Water Stage	MPC	Mission Performance Centre
HYCOS	Hycos Hydraulics & Control Systems	MRC	Mekong River Commission
HYPE	Hydrological Predictions for the Environment model	MTR	Mid Term Review
IAG	International Association of Geodesy	MSS	Mean Square Slope
IDAN	Intensity-Driven Adaptive-Neighbourhood	MSS	Mean Sea Surface
IE	Individual Echoes	MWR	Microwave Radiometer
IGS	International GNSS (Global Navigation Satellite	NAVAT	Navigation and Attitude
	Systems) Service	NDVI	Normalised Difference Vegetation Index
IM	Internal Meeting (e.g. not with the client)	NDWI	Normalised Difference Water Index
IODD	Input Output Data Document	netCDF	Network Common Data Form
IPF	Integrated Processing Facility	NOAA	National Oceanic and Atmospheric Administration
ISD	isardSAT	NR	New Requirement (w.r.t. the SoW)
ITRF	International Terrestrial Reference Frame	NRT	Near Real-Time
IRF	Impulse Response Function	NWM	Numerical Weather Model
Jason-1	Altimetry satellite, T/P follow-on	OCOG	Offset Centre of Gravity
Jason-2	Altimetry satellite, also known as the « Ocean	OPO	One Per Overflight
	Surface Topography Mission » (OSTM), Jason-1	OSTM	Ocean Surface Topography Mission (also known as
	follow-on		Jason-2), is also the name of the satellites series
Jason-3	Altimetry satellite, Jason-2 follow-on		T/P, Jason-1, Jason-2 and Jason-3
Jason-C	S Jason Continuity of Service	OVS	Orbit State Vector
KML	Keyhole Markup Language	PDF	Probability Density Function
KO	Kick Off	PEACH	Prototype for Expertise on AltiKa for Coastal,
L1A	Level-1A		Hydrology and Ice
L1B	Level-1B	PEPS	Sentinel Product Exploitation Platform (CNES)
L1B-S, L	1BS Level-1B-S (aka, Stack data)	PISTAC	H (french acr.) Prototype Innovant de
L2	Level-2		Système de Traitement pour les Applications
L3	Level-3	-	Cotieres et l'Hydrologie
L4	Level-4	PMP	Project Management Plan
		POCCD	Processing Options Configuration Control Document

PR	Progress Report	SOA	State Of the Art
PRF	Pulse Repetition Frequency	SOW	Statement Of Work
PSD	Product Specification Document		Software Problem Reporting
PTR	Point Target Response	SPS	Sentinel-3 Surface Topography Mission System
PVP	Product Validation Plan		Performance Simulator
PVR	Product Validation Report	SRAL	SAR Radar Altimeter
PVS	Pseudo Virtual Station(s)	SRTM	Shuttle Radar Topography Mission
PWF	Pseudo Waveform	SSB	Sea State Bias
RADS	Radar Altimeter Database System	SSMI/IS	Special Sensor Microwave Imager (SSM/I) Sounder
RANSA	C Random Sample Consensus	SSO	Single Sign-On
RB	Requirements Baseline (document)	Stack	Matrix of stacked Doppler beams
RCMC	Range Cell Migration Curve	STD	Standard Deviation
RCS	Radar Cross Section	STM	Sentinel-3 Surface Topography Mission
RD	Reference Document	SUM	Software User Manual
RDSAR	Reduced SAR (also known as Pseudo-LRM)	SWBD	SRTM Water Body Data
RF	Random Forest	SWH	Significant Wave Height
RGB	Red, Green, Blue	TAI	Temps Atomique International (International Atomic
RID	Review Item Discrepancy		Time)
RIP	Range Integrated Power (of the MLD) sometimes	TBC	To Be Confirmed
	referred as Angular Power Response (APR)	TBD	To Be Done
RMS	Root Mean Square	TCWV	Total Column Water Vapour
ROI	(geographical) Region(s) Of Interest	TDS	Test Data Set
RP Report Period (a month that is being reported into a Progress Report)		ТМІ	Tropical Rainfall Measuring Mission (TRMM) Microwave Imager
RSS	Remote Sensing Systems	TN	Technical Note
RWD	River Water Discharge	T/P	Topex/Poseidon (altimetry satellite)
RWL	River Water Level	TR	Technical Risk
SAMOS	A SAR Altimetry MOde Studies and	UNESC	O United Nations Educational, Scientific and
	Applications		Cultural Organization
SARAL	In Indian "simple", in english "SAtellite for ARgos and	URL	Uniform Resource Locator
	AltiKa.	USGS	United States Geological Survey
SARIn	SAR Interferometric (CryoSat-2/SIRAL mode)	USO	Ultra Stable Oscillator
SAR	Synthetic Aperture Radar	UTC	Coordinated Universal Time
SARvato	SAR Versatile Altimetric Toolkit for Ocean	UWM	Updated Water Mask
	Research & Exploitation	VS	Virtual Station(s)
SCOOP	COOP SAR Altimetry Coastal & Open Ocean Performance		Vertical-Horizontal polarisation
SDP	P Software Development Plan		Vertical-Vertical polarisation
SEOM	EOM Scientific Exploitation of Operational Missions		Work Breakdown Structure
SHAPE Sentinel-3 Hydrologic Altimetry PrototypE		WF	Waveform
SI-MWR Scanning Imaging MWR		WFR	Water Fraction Ratio
SME	ME Small and Medium-sized Enterprise		World Meteorological Organization
SMHI	MHI Swedish Meteorological and Hydrological Institute		Work Package(s)
SNAP	IAP SeNtinel Application Platform		with respect to

WTC Wet Tropospheric Correction

XML eXtensible Markup Language

ZP Zero Padding