

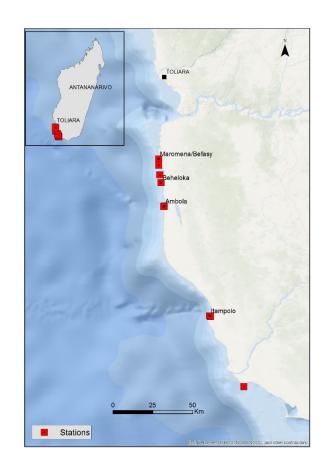
MDG18a Evolution of Reef in the Mahafaly Seascape, South-Western Madagascar

Fanja V. RAZAFINDRAMASY, Tahiry RANAIVOSON, Gaëtan TOVONDRAINY (WWF Madagascar)

11th and 12th February 2020, Antananarivo, Madagascar

Outline

- The project/operation C-RISe data was used for,
- What data was used,
- Summary of the main results
- Why is the information / analysis is useful,
- Future plans for the Use Case will it be continued or repeated?
- Any recommendations (e.g. if other information, software or training would be useful).



Mahafaly

Use of the C-RISe data

- C-RISe Data was used to analyze the link with reef evolution from reef monitoring on 18 stations located on 09 villages, every 2 years from 2011 to 2016
- Correlation between climate data and reef monitoring results

Data used

- Different parameters targeted corals cover (hard coral, soft coral, dead coral) and algae cover (macro algae, incrusting algae and turf algae)
- Use of climate data (SST, rainfall, wave height, current direction) to understand the evolution of reef cover.

Main results

ATION SERVICE

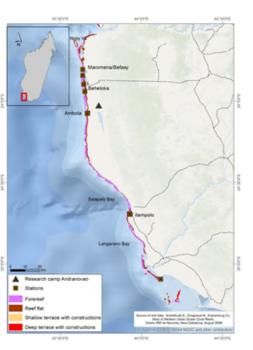


Figure 2. Sea Surface Temperature (January 2016), Images procuded by Bilko software from NOAA SST data

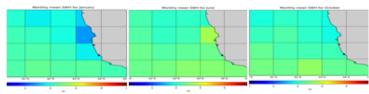


Figure 3. Monthly Mean Significant Wave Height, 1992-2016 (Maromena in green point, Ambola in red

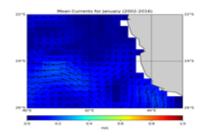
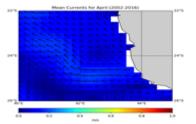



Figure1: Location of the study sites

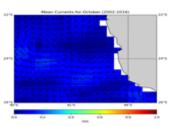


Figure 6: Monthly Mean Current and Direction, 2002-2016 for January, April and October

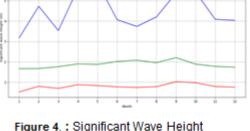
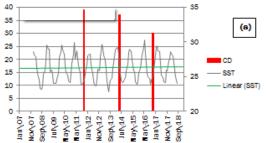



Figure 4.: Significant Wave Height Monthly Maximum (blue), Mean (green) and standard Deviation (red), at Maromena, 1992-2016

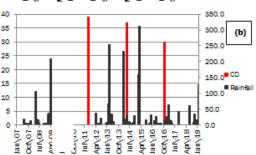


Figure 7. Evolution of hard coral cover (CD) and its relation with SST (a) and rainfall (b)

CONSERVATION

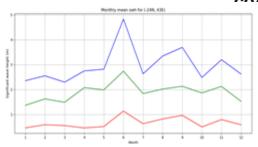
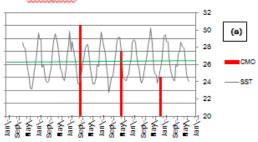



Figure 5.: Significant Wave Height Monthly Maximum (blue), Mean (green) and standard Deviation (red), at Ambola & Itampolo, 1992-2016

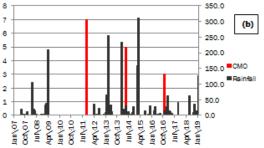


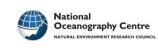
Figure 8 Evolution of soft coral cover (CMO) and its relation with SST (a) and rainfall (b)

Main results

- <u>Decrease</u> of the hard coral cover, soft coral cover; <u>Increase</u> of turf algae; Macro algae cover and incrusted algae cover remained <u>constant</u> (2011-2016)
- High precipitation means transportation of important sediments and pollutants from land into the sea by river, covering the reef.
- Increase of the SST (0.013°C/year) was observed
- Heavy waves <u>might affect</u> the coral reef: For Maromena, significant wave height maximum is on May and may reach more than 5m. For Ambola and Itampolo, significant wave height maximum is on June with more than 4 m. The mean height varies from 1.5 m to 2.5 m.
- The ocean current speed is low, not exceeding 0.2 m/s. The <u>direction of</u>
 the current is variable during the period. It may have an impact on the
 health of the coral reef.

Utility of the information and analysis

- The reef system provides a physical barrier, ecosystem services for fisheries and shoreline protection.
- The livelihood of fishermen on the Mahafaly coast (South-Western Madagascar) depends on it.
- Data on the evolution of the reef system health and the causes of its perturbation provide important information to ensure their sustainable management and protection.
- The evolution of coral and algae cover is very complex as many factors (human, physical or climate factor) can contribute on it. Therefore, a deep understanding of these factors, through C-RISe data analysis, is key.



Future plans

- More refine reef monitoring:
 - To have details information, reef monitoring must be done more regularly (two per year: during the dry and the wet season), as current data (every two years) cannot be used to significantly conclude the trends of the change observed.
 - Prospecting the use of high resolution satellite data for reef monitoring
 - Field visit to understand and verify the results from climate data, including C-RISe Data (waves, current, etc.).
 - Effects of human activity which is a great reef degradation factor.
 - Effect of cyclones.

Recommendations

• Support for:

- Training on satellite data processing and interpretation (including coral reefs image), statistical analysis
- Access to specific and precise data (Chlorophyll concentration, CO2, Wind speed, current direction, wave height, coral reefs satellite image, etc.)
- Use of higher resolution SST (MUR SST) to explore patterns of seasonal and interannual variability
- Analyse of SST to assess coral bleaching risk during warmest months

