

Objectives of WP3000 – DDP development

- Implementing the initial processing scheme to produce L1B data from Cryosat-2 SAR C-FBR data, and generating the initial L1B test data sets for open ocean and coastal zone studies.
- Developing, testing and implementing modifications to the L1 processing.
- Implementing modifications to the processing scheme to produce L1B data, and generating L1B test data sets phase 2 of the open ocean and coastal zone.

SCOOP Sentinel-3 L1 Delay-Doppler Processor (DDP) will be an **evolution** of isardSAT's existing DDPs:

- Sentinel-6/Jason-CS P4 GPP (under ESTEC/ESA contract)
- CryoSat-2 DDP (developed in-house)

isardSA

• Sentinel-3 L0/L1 GPP (developed for ESA through CLS)

- The main processing stages of the Doppler-Delay processor (DDP) are:
 - 1. Surface locations, Final burst datation and Window delay
 - 2. Beam angles computation
 - 3. Azimuth processing (Delay-Doppler processing + Stacking)
 - 4. Geometry corrections
 - 5. Range compression
 - 6. Multi-looking

- 7. Scaling factor computation (sigma-0 extraction)
- Details on the description and mathematical formulation of each of the processing stages in SCOOP ATBD (D1.3).

DDP Architecture

• DDP SW architecture (based on S6 L0/L1 GPP)

DDP Architecture

• DDP SW architecture (based on S6 L0/L1 GPP)

Change of architecture compared to previous alt. SAR L1b proc. (as for S6):

isard**S**

Will apply all corrections to surface-referenced echoes instead of satellitereferenced.

Helps validation & verification processes and incorporation of improvements in the stack. By itself shall not imply any improvement in performance.

Options on a DDP

GPP Processor Configuration			
Parameter	Туре	Options	Applications
Burst azimuth windowing	Weighting	Deactivated /Boxcar, Hamming, Hanning	All
Surface focusing	Beam Pointing	Nominal / Surfaces forced by the user	Point Target, Inland waters
Azimuth processing method	Beam Pointing	Exact / Approximate	Point Target, Inland waters, Coastal
L1B-S and L1B range oversampling factor	Increase resolution	Deactivated / ZP = 2 ⁿ	Specular echoes
Stack masking	Cleaning	Deactivated / Defined by the user	Inland waters, Coastal
Antenna weighting	Weighting	Deactivated / Activated	All
Sigma-0 at stack level	Increase resolution	Deactivated / Activated	All
Multi-look zeros method	Weighting	Using / Not using zeros	All

POCCD: Configuration file

Name	Description	Value
Burst azimuth windowing	Type of window applied to each burst before	0 None
	performing the azimuth FFT	1 Boxcar
		2 Hamming
		3 Hanning
		(4 Other)
Surface focusing	Option to move the surface locations	0 No
		1 Only one given surface
		2 A given surface and the following ones
		3 A set of surfaces (If 3 then we need the
		name of the file with the given surfaces)
Azimuth processing method	Value that forces the precision of the Delay-	0 Automatic
	Doppler process	1 Approximate method
		2 Exact method
Antenna weighting	Flag to compensate for the antenna pattern	0 No
		1 Yes
L1B-S and L1B range	Number of zero-padding applied to the waveforms	2, 4,, 1024,
oversampling factor	during the range compression process	
Stack masking	Flag to apply a mask to the stack in order to delete	0 No
	undesired phenomena	1 Yes
Multi-looking method	Average through all the samples or just consider	0 All samples
the non-0 samples		1 Only non-0 samples
Sigma-0 at stack	Compute different Sigma-0 values within the stack	0 No
	or not (then, the computation is only made on averaged stacks, i.e., one value per L1B waveform)	1 Yes

POCCD: Configuration parameters

Name	Description	Value
Noise start sample	Start sample index for computing the waveform's noise	12*zp (zero-padding)
Noise stop sample	End sample index for computing the waveform's noise	16*zp
Noise floor	Maximum noise power allowed for a beam.	-
Noise top	Threshold that flags a beam if its integrated power is above this value.	3* Noise floor
Number of input points for surface interpolation	-	10
Number of output points of surface interpolation	-	Input points * 20
Smoothing factor for surface interpolation	-	0
Roughness threshold	Threshold that determines if a surface is rough or not. This is used to decide the type of interpolation is applied to the surface	10 meters
Reference beam	When aligning a stack, the beam that is taken as a reference. This could be the central beam, the beam with the highest integrated power, etc. TBD	0 Central 1 Maximum integrated power (2 Others)
Sub-stack size	When computing stack characteristics, number of stack integrated power that are averaged in order to smooth the fittings that are performed.	5

INSTRUMENT PARAMETERS		
Ku band frequency	13.575 GHz	
Rx bandwidth	320 MHz	
Rx pulse width	44.8 µs	
Chirp slope sign	negative	
SAR pulse repetition frequency	18181.818 Hz	
Number of pulses in a BURST	64	
Burst repetition interval	0.011693825 s	
PTR 3dB width	2.801e-9 s	
ANTENNA PARAMETERS		
Antenna 3dB aperture used to compute the doppler model	2D elliptic sinc function: teta3dB_X = 1.095 deg teta3dB_Y = 1.22 deg	
Antenna gain at boresight	42.6 dB	

S3 like TDS

- In order to produce a Sentinel-3 like TDS we will create a POCCD file Sentinel-3 like (parameters adjusted to S3).
- We also need to know the Configuration parameters (and any, if any, parameter that might be hard coded).
- And the Characterisation data.

isardSAT has delivered:

- DX.X: Technical Note on science review or state of the art.
- DX.X: Requirement Baseline
- D1.3: Algorithm Theoretical Basis Document (ATBD) → draft now and updated @ T0 + 14
- DX.X: POCCD

- Because of the heritage of our DD processor, we do not implement in two phases.
- Data volume is huge! 4 Tbytes.
- Processing volume and time do not allow to reprocess all the data in different configurations (S3 and +) !
- Processing time based on S6 requirements:

	CAL1 ⁽¹⁾	CAL1 ⁽²⁾	CAL2	Processing time
CASE 1*	Applied	Not applied	Not applied	l times real-time
CASE 2**	Applied	Applied	Applied	0.5 times real-time

Note that this processing time is to be achieve by the operational S6 GPP in 2018.

• Note that ACDC is not part of SCOOP project.

SardSAT

Thank You! Eduard.Makhoul@isardSAT.co.uk Monica.Roca@isardSAT.co.uk

WP2000: Level-1B data volume

FBR (rough) data volume estimation

$$DV = N_{acq} \cdot \frac{T_{acq}}{T_{rc}} \cdot N_{brc} \cdot N_{pb} \cdot N_s \cdot 2 \cdot N_{bits}$$

ROI	Average volume per year (Gigabytes- GB)
CP40_002	149,4
CP40_003	93
SAR_Pico_00	644,8
AR2690_1	37,16
AN6524_1, AN6524_5 and AN6524_6	257,4
Agulhas (overlapping AR2677_1)	167,65
AR2690_2	35,4
Total	1384,81

Data Volume- Open ocean ROIs

isardS

Data Volume- Coastal zone ROIs

ROI	Average volume per year (Gigabytes- GB)
Flor_ST (overlapping AN2706_7)	7
CP4O_01	146,6
AmazonSAR	26,8
AN6524_1, AN6524_5 and AN6524_6	194,1
AN6524_4 (over North Sea)	135,84
Agulhas (overlapping AR2677_1)	167,65
ESurge_1	50,2
AN6531_4	52,1
Harvest	19,6
Total	799,89

Total amount (2-years period):

2.7 Tbytes (Open Ocean) & 1.6 Tbytes (Coastal Zones)

(*) Extrapolation of total volume amount from available data for April-October 2015 from CUT software

WP2000: Regions of Interest (I)

WP2000: Regions of Interest (II)

Open Ocean ROIs

Flori_ST

AN6524_1/5/6

AN6524_1

AmazoSAR

AR2677_1

Harvest

ESurge_1

AN6531_4

