

Cryosat-2 SAR altimetry processing and use in the Arctic Ocean

Ole Andersen, M. Jain & Lars Stenseng

Context

We investigate satellite altimetry in the Arctic Ocean for

- 1) Studies of long term changes
- 2) Mean sea surface determination.
- 3) MDT determination with GOCE
- 4) Ocean circulation.
- 5) Ocean tide modelling

Large portion covered by sea ice Large variation in surface types

Large variation in surface/waveform types

From Laxon and Rapley (1987)

Classification: Stack Standard Deviation

Arctic Cryosat-2 Classification

Southampton, UK, July 2013

Lead/Ocean classsification Summer vs Winter

SAR altimetry expert Group Meeting Distribution lead/ocean is determined by SSMI/S mask Southampton, UK, July 2013

Cryosat-2 SAR satellite altimetry for 2012

Applying 6 SAR Empirical Retrackers

■ 1-Hz Std deviation

DTU Space National Space Institute

Retracker	LEAD	Lead - Winter	Lead - Summer
		All values in em	
R1 : Traditional OCOG Retra	acker	3.02 (442950)	2.33 (160905) <
R2 : Traditional Threshold R	etracker	3.25(439421)	2.63(159527)
R3 : 5 parameter Beta Retrac	ker	9.25~(452956)	9.14(163059)
R4 : primary peak OCOG Re	tracker	2.95~(444133)	2.28 (161177)
R5 : primary peak Threshold	Retracker	2.99(438560)	2.33 (159062) <
R6 : ESA Retracker (Cryosat-	-2 Level-2 Product)	3.24(437469)	2.58(158853)
Retracker	OCEAN	Ocean - Winter	Ocean - Summer
		All values in cm	
		All value	
R1 : Traditional OCOG Retra	cker	All value 12.93 (169756)	12.55 (146673)
R1 : Traditional OCOG Retra R2 : Traditional Threshold Re	cker etracker	All Value 12.93 (169756) 8.4 (173604)	12.55 (146673) 6.9 (152321) <
R1 : Traditional OCOG Retra R2 : Traditional Threshold Re R3 : 5 parameter Beta Retrac	cker etracker ker	All Value 12.93 (169756) 8.4 (173604) 11.21 (173504)	12.55 (146673) 6.9 (152321) ◀ 9.97 (152399)
 R1 : Traditional OCOG Retra R2 : Traditional Threshold Ret R3 : 5 parameter Beta Retract R4 : primary peak OCOG Ret 	cker etracker ker tracker	All Value 12.93 (169756) 8.4 (173604) 11.21 (173504) 7.69 (165827)	12.55 (146673) 6.9 (152321) 9.97 (152399) 6.09 (153391)
 R1 : Traditional OCOG Retra R2 : Traditional Threshold Ret R3 : 5 parameter Beta Retract R4 : primary peak OCOG Ret R5 : primary peak Threshold 1 	cker etracker ker tracker Retracker	All Value 12.93 (169756) 8.4 (173604) 11.21 (173504) 7.69 (165827) 8.67 (166798)	12.55 (146673) 6.9 (152321) 9.97 (152399) 6.09 (153391) 7.11 (153653)

Minumum of 6 obs/sec required, Default corr applied.

DTU Space National Space Institute

Peak Thress-hold retrack (R5) "average 1Hz std.dev in 2° blocks"

Summer (5 month)

Winter (7 month)

Ocean retracking (R5) "1Hz std.dev"

Ocean data could/should be retracked using i.e. SAMOSA retrackers. Notice: Only "few" will result in 1 Hz data SAR altimetry expert Group Meeting

Southampton, UK, July 2013

Found considerably higher scatter in track mean for UCL04/CLS01 MSS than DTU10MSS.

We found 0.7 meter constant value (retracker offset) SAR altimetry expert Group Meeting Southampton, UK, July 2013

C2 relative to UCL04/CLS01 MSS (ESA default)

C2 relative to DTU10MSS)

Conclusion

- Compared with conventional 1 Hz altimetry the 20 Hz Cryosat-2 SAR provide a wealth of new data and important information up to 88N.
- Bascially the 20 Hz C2 lead data has 2-3 cm noise same or better "precision" as conventional 1 Hz observation
- Ocean data should be retracked by SAMOSA or other retracker
- Suggestion for discussion: reconsider 1 Hz computation for Arctic:
 - Requirement of 16 obs in 1 Hz => Removes 88%
 - Requirement of 10 obs in 1 Hz => Removes 59%
 - Requirement of 6 obs in 1 Hz => Removes 31%
 - New DTU13MSS/MDT to be released at ESA Living Planet Symposium in September.

Summary:

MSS:

- Evaluate LFIB effects on MSS,
- New DTU13 MSSs (both LFIB and NoLFIB) to be released at ESA Living Planet Symposium.

MDT:

- New DTU13 MDTs to be released at ESA Living Planet Symposium,
- Develop marine geoid for absolute referencing of SSHs (including error characteristics),
- Improve marine geoid using in-situ gravity data.

The DTU12MDT mean dynamic topography model is available at: http://www.space.dtu.dk