

Innovating to protect our World's Life

Ionospheric correction

CP4O final meeting

Sustainable development

- Ionospheric corrections for altimetry data
 - Dual-frequency altimeter (when available)
 - S-band loss on Envisat → no correction after cycle 65
 - Not available for CryoSat-2
 - Global Ionosphere Maps (GIM)
 - 5°x 2.5°maps
 - Update frequency: 2 hours
 - BENT model
 - Used as an alternative when GIM is unavailable for CryoSat-2
 - Limited to latitudes under ±82 degrees

SPECTRE service: <u>http://www.noveltis.com/spectre/</u>

• History:

- Early developments with the support of ESA and the French Ministry of Research
- Since 2005, maintained on NOVELTIS own funds
- Complete reprocessing in 2009
- Validation against ionosonde and altimeter measurements (Crespon et al., 2007)

SPECTRE TEC maps 2014/06/19 12:00:00

• SPECTRE service

- Features:
 - Available from 2004 to present
 - More than 300 GNSS stations processed over Europe
 - 2.5°x 2.5°maps
 - Update frequency: 30 seconds
- Innovation for altimetry data
 - Provide an accurate ionospheric correction based on measurements
 - More precise than the Global Ionosphere Maps (GIM) from JPL
 - \rightarrow Better spatiotemporal resolution: better sampling of the high frequency events.

- SPECTRE service applications:
 - Geophysical studies by IPGP
 - Detection of gravity and infra-sound waves generated by tusnami & seisms
 - CNES R&D study
 - Combination of GPS+DORIS for a mono-frequency radar altimeter
 - FP7 SOTERIA
 - Specific processing of extreme Space Weather Events: ionospheric storm at high latitudes (North Pole) → demonstrated on some specific events
 - ► FP7 POP-DAT
 - Database of Traveling Ionospheric Disturbance events for data-mining (Space Weather studies)
 - ▶ CP40
 - Computation of a ionospheric correction for Cryosat-2 over Europe (NEA + Med)
 - + other on-going projects in space weather

- Specific processing for CP4O
 - Extract the Total Electronic Content (TEC) from the SPECTRE database
 - at the location and date of the CryoSat-2 measurements (European coasts)
 - From January 2011 to January 2013
 - Remove the ionosphere contribution between CryoSat-2 and the GPS constellation (Δiono)
 - IRI95 (standard model), dependency to the solar activity
 - Ionosphere content is not linear
 - Compute the ionospheric correction for CryoSat-2

→ Evaluation performed by CLS, in collaboration with NOVELTIS (see T. Moreau's presentation).

- Perspectives for SPECTRE in altimetry
 - SPECTRE maps in the Arctic Ocean
 - North Pole (down to 40°N) demonstrator already exists
 - Magnetic storms stronger in the high latitudes
 - Global SPECTRE maps
 - NRT SPECTRE ionospheric correction
 - Today, maps produced with a 2-day delay
 - Some adaptations required to upgrade the service and generate regional maps within a 3-hour delay
 - Comparison between the various empirical ionospheric models used to compute the correction
 - IRI95/2001/2007/2012, SPIM, etc...
 - Impact on the scaling factor between the GPS satellites and the altimeter satellite