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Typical Arctic waveforms 
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LARS (LARS the Advanced Retracking System) 
Polar Ocean Processing Flow 

Extract
waveform

Calculate
waveform
parameters

Robust
retracking

Reject
non-lead

Estimate
peak power

Precise
retracking

Classify MergeExtract stack
parameters

Group
large
leads

ESA L1b SAR

ESA L2 SAR

DTU L2 SAR

•  C++ implementation (under version control) 

•  Using: LevMar, Qt, Lapack, Armadillo, FFTW 

•  Multiple retrackers and classifiers 

•  Initial: Empirical retrackers and classification for Polar Ocean 

•  Currently: SAMOSA3, Inland water 

•  Currently running parallel on 64 cores 

•  Direct access to Baseline-0 , -A, and -B local mirror (L1b, L2, L2i) 

•  All SAR ocean and inland water (3.5 years) -> ~7 hours to process 
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Classification 
 

5.3.2 DETECTION OF LEADS IN CRYOSAT-2 SAR DATA 65

(a) Envisat ASAR image overlayed with CryoSat-2 track. Red dots indicates detected leads.
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(b) Height (top red), return power (top blue), and stack parameters; center (black), skewness (red), and kurtosis
(blue). Shaded areas indicate detected leads.

Figure 5.6: Envisat ASAR image compared with 80% threshold retracked height, return
power, and stack parameters from CryoSat-2 SAR data.
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•  Hybrid classification 

•  Standard Pulse Peakiness 

•  Stack Standard Deviation 

•  Stack Center History 

•  Single Peak Width 
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Pulse Peakiness 

4 3.3 PERFORMING THE RETRACKING

3.3 Performing the retracking

The retracking of the waveforms is performed using a simple leading edge
threshold retracker similar to that of Davis (1997). The threshold value F

T

is
chosen between 0 and 1 and indicates the fraction of the power benchmark
to be used for the retracking point. To begin with the first bin position (j)
with power higher than or equal to F

T

· P

b

is found and a linear interpolation
between bin j and bin j� 1 is performed to obtain the fraction of a bin where
the threshold power is found. Finally the epoch is derived, in bin counts, by
adding j � 1 to the fraction as described in Equation 2.

E =
F

T

· P

b

� p

j�1

p

j

� p

j�1
+ j � 1 (2)

3.4 Identify leads (Classification)

The classification is primarily based on a set of parameters describing the
morphology of the waveform and the power distribution in the individual
looks in the stack. The parameters describing the power distribution is taken
directly from the ESA Baseline-B L1b product and the parameters describ-
ing the morphology is described in the following. Furthermore, as described
above the ESA Baseline-B L2 product is merged into the DTU dataset which
allows a direct comparison of the ESA Baseline-B classification of the indi-
vidual waveforms.

A classic parameter for identification of specular returns is the Pulse
peakiness (PP), which determines the ratio between the peak power and
the integrated power in the waveform (Laxon, 1994; Peacock and Laxon,
2004). In the classical formulation the first five samples are discarded to
avoid wrap around effects and the ratio is scaled using the nominal track-
ing point bin. A pulse peakiness value is available in the ESA Baseline-B L2
product but the used formulation is unknown and results in values exceed-
ing 500 as opposed to the classical values not exceeding 1. Equation 3 gives
the formulation used in the DTU classification.

PP =
65535
Â127

i=0 p

i

(3)

To further characterize the peak a Gaussian (see Equation 4) is fitted to
the most powerful bin including two bins on each side similar to approach
by Armitage and Davidson (2014). This will give additional information

DTU-Space, National Space Institute
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Reflective properties 
Stack Standard Deviation 
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Stack Center 
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Sampling and peak power estimation 
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Retracking 

4 3.3 PERFORMING THE RETRACKING

3.3 Performing the retracking

The retracking of the waveforms is performed using a simple leading edge
threshold retracker similar to that of Davis (1997). The threshold value F

T

is
chosen between 0 and 1 and indicates the fraction of the power benchmark
to be used for the retracking point. To begin with the first bin position (j)
with power higher than or equal to F

T

· P

b

is found and a linear interpolation
between bin j and bin j� 1 is performed to obtain the fraction of a bin where
the threshold power is found. Finally the epoch is derived, in bin counts, by
adding j � 1 to the fraction as described in Equation 2.

E =
F

T

· P

b

� p

j�1

p

j

� p

j�1
+ j � 1 (2)

3.4 Identify leads (Classification)

The classification is primarily based on a set of parameters describing the
morphology of the waveform and the power distribution in the individual
looks in the stack. The parameters describing the power distribution is taken
directly from the ESA Baseline-B L1b product and the parameters describ-
ing the morphology is described in the following. Furthermore, as described
above the ESA Baseline-B L2 product is merged into the DTU dataset which
allows a direct comparison of the ESA Baseline-B classification of the indi-
vidual waveforms.

A classic parameter for identification of specular returns is the Pulse
peakiness (PP), which determines the ratio between the peak power and
the integrated power in the waveform (Laxon, 1994; Peacock and Laxon,
2004). In the classical formulation the first five samples are discarded to
avoid wrap around effects and the ratio is scaled using the nominal track-
ing point bin. A pulse peakiness value is available in the ESA Baseline-B L2
product but the used formulation is unknown and results in values exceed-
ing 500 as opposed to the classical values not exceeding 1. Equation 3 gives
the formulation used in the DTU classification.

PP =
65535
Â127

i=0 p

i

(3)

To further characterize the peak a Gaussian (see Equation 4) is fitted to
the most powerful bin including two bins on each side similar to approach
by Armitage and Davidson (2014). This will give additional information

DTU-Space, National Space Institute

3. ALGORITHM DESCRIPTION 3

3 Algorithm Description

Something about peaky waveforms, fitting instability due to few samples

3.1 Overview of algorithm flow

3.2 Determine a power benchmark for the retracker

The first step is to identify the bin of maximum power which will be close
to the center of the peak. However, the very narrow peak from the specu-
lar reflection might not be coincident with a bin position (see Figure 3) and
therefore a more stable peak power must be found.
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(a) Maximum power coincident with a sam-
ple bin (black) overlayed with a fitted Gaus-
sian (red).
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(b) Maximum power between with two sam-
ple bins (black) overlayed with a fitted Gaus-
sian (red).

Figure 3: Bin offset relative to maximal power.

To obtain a stable value for the power benchmark (P
b

) the bin position
with maximal power (m) is found and the benchmark power is then calcu-
lated as the average of the maximal power and the power of two bin on each
side of the maximal bin position, see Equation 1. It should be emphasized
that the derived power benchmark is not an estimate of the true peak and
should therefore not be used to derive a surface roughness parameter like
s0.

P

b

=
1
5

m+2

Â
i=m�2

p

i

(1)

Algorithm Theoretical Baseline Document - Polar Ocean
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Retracked SAR (March 2013) VS MSS models 
  UCL04   and      DTU10 

   (L2) 
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DTU13 Mean Sea Surface 
ftp://ftp.space.dtu.dk/pub/DTU13/ 
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MICOM 
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DTU13 Mean Dynamic Topography 
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Trend and Bias 
 
Baseline-B (17 months non-continuous) 
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Validation of classification 
IceBridge, ENVISAT ASAR and MODIS Analyzing CryoSat Observations 79

Figure 10.5.2: DMS images from 12:42:04, 12:42:07 and 12:42:12 merged together and overlayed with
CryoSat elevations. The satellite is descending i.e. flying from the top right corner to the bottom left
corner. The image show a refrozen lead (dark feature).

Following the descending flight direction the waveforms (Fig. 10.5.3(a)-(f)) will be de-
scribed one by one. Starting from (a) waveform number 7872, this is a very sharp one peaked
waveform with a lead-type waveform. From the DMS image this is not a lead, but the ob-
servation is in between two leads, and is contaminated by the strong return signal from these
leads. Comparing this and the next waveform, it is seen that the leading edge is less sharp in the
beginning and with a relatively low peak power 8 · 10�12 W. This waveform would have been
retracked correctly if it was shifted around 1.5 range gates to the left. One range gate in the
waveform corresponds to 23.42 cm in the vertical direction. This means that the true surface is
actually the slow rising part of the waveform, the bump, before the second kink, marked with a
green circle and an arrow.

The waveforms number 7873 in (b) and number 7874 in (c) are lead-like waveforms with a
high peak power and a very sharp leading edge followed by a very sharp trailing edge. They are
not perfect textbook examples because of the small kinks (marked with an arrow) just before
the sharp rise. (b) also has a kink (marked with an arrow) in the beginning of the trailing edge.
This is believed to be due to the snow on top of the refrozen lead and the e�ect by scattering

86 Measurements of sea ice

Figure 10.5.7: MODIS image from May 27, 2012 with overlayed elevations from CryoSat orbit number
10885. The sea ice is very dynamic in this region as seen by the many leads (black features) in between
the ice floes.

From: S. Rose 2013 
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IceBridge underflights 
2011-2013 
 

0˚

30˚

60˚

−120˚

−9
0˚

−
6
0
˚ −

3
0
˚

F02

0˚

30˚

60˚

−120˚

−9
0˚

−
6
0
˚ −

3
0
˚

F06

F09
F11

F15

0˚

30˚

60˚

−120˚

−9
0˚

−
6
0
˚ −

3
0
˚

F01

F24



CP4O Final Review: 30. June-2. July 2014 16 DTU Space, Technical University of Denmark 

IceBridge (DMS Lead detection) 
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DTU13MSS and DTU13MDT 
ftp://ftp.space.dtu.dk/pub/DTU13/ 
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