SAR Altimetry numerical simulations over water surfaces

Christine Gommenginger, Paolo Cipollini (NOCS) Cristina Martin-Puig, Jose Marquez (Starlab) David P. Cotton (Satellite Oceanographic Consultants) R. Keith Raney (Johns Hopkins Uni/Applied Physics Lab) Jérôme Benveniste (ESA/ESRIN)

Presentation Content

- What is Delay-Doppler Altimetry (DDA)?
- The ESA SAMOSA project
- Motivation and methodology
- CRYMPS DDA simulations over water
- First results
- Conclusions

What is Delay-Doppler Altimetry (SAR)?

Conventional ALT footprint scan

DDA: a fundamentally different method

ESA SAMOSA project

- SAMOSA Development of SAR Altimetry Mode Studies and Applications over Ocean, Coastal Zones and Inland Water
- Project management: David Cotton, SatOC
- Consortium members: NOCS, Starlab, De Montfort University, Danish National Space Centre
- Tasks:
 - 1. Review state of the art (Starlab)
 - 2. Quantify improved range error in different sea states (NOCS)
 - 3. Assess recovery of short scale surface slope signals (DNSC)
 - 4. Develop theoretical model for DDA waveforms (Starlab)
 - 5. Assess capability in coastal zone and inland waters (DMU)
 - 6. Application to RA-2 individual echoes (NOCS)
 - 7. Validation with ASIRAS data (DNSC)

Motivation

 Task 2: to independently validate Jensen & Raney (1998) on improved sea level retrieval with DDA against sea state

Methodology

- CRYMPS: Cryosat Mission Performance Simulator
- CRYMPS developed & run at University College London/MSSL, in collaboration with ESA/ESTEC
- Simulates the CryoSat platform orbit and instrument operation, generates official Cryosat products for LRM, SAR and SARIn mode, for a given (explicit) surface
- Simulator and surface descriptors optimised for ice/sea ice surfaces
- Here, CRYMPS is applied to ocean surfaces

CRYMPS runs over open ocean

Code	Description	SWH	Swell Amplitude	Swell wavelength	PDF s.d.
F13	F1: CRYOVEX 2006, 02/05/2006 F3: CRYOVEX 2006, 30/04/2006	1.41m 0.71m	1.0 m 0.5 m	100 m 50 m	4 cm 4 cm
F24	F2: moderate sea state F4: high sea state	4.23 m 14.1 m	3.0 m 10 m	150 m 200 m	10 cm 10 cm
C3	Realistic ocean wave spectrum (Elfouhaily et al., 1997)	1/2/3 m	N/A	N/A	10 cm
C1	Realistic ocean wave spectrum (Elfouhaily et al., 1997)	0.1/4/5 m	N/A	N/A	10 cm
FT1	Sea Floor Topography 1, variations in sea surface height, low swh, short wavelength	1.41 m	1.0 m	100 m	4 cm

Work in Progress !

Courtesy: K.Raney & C. Martin-Puig

20Hz pseudo-LRM

First results

C3 LRM Hs: $0.1 \rightarrow 4 \rightarrow 5m$

- 16 seconds along-track
- 260 LRM samples along-track

- No Power Scaling applied
 - No along-track variability in peak amplitude
 - No Sigma0 info
- Amplitude scaled by 10⁻⁶

Along-track sample

Ocean retracker results

C3 LRM

Ocean retracker results

Conclusions

- SAMOSA will assess the improved performance of DDA w.r.t. pulse-limited altimetry to:
 - Retrieve higher-accuracy ocean range, detect short-scale surface slope, extend altimetry to the coastal zone,...
- Methodology is based on Cryosat-type SAR and LRM data from the CRYMPS simulator applied to ocean surfaces
- Reduction of SAR -> pseudo-LRM still debated
- First results show that:
 - CRYMPS produces realistic LRM and DDA waveforms
 - the CRYMPS waveforms were successfully retracked with the NOCS ocean retracker, both LRM and RDSAR

SAR Altimetry numerical simulations over water surfaces

Thank You !

For further info, contact Christine Gommenginger cg1@noc.soton.ac.uk

